UML 2.0-based Terms and Definitions

abstract class

A class that cannot be directly instantiated. Contrast: concrete class.

abstraction

The result of emphasizing certain features of a thing while de-emphasizing other features that are
not relative. An abstraction is defined relative to the perspective of the viewer.

action

A fundamental unit of behavior specification that represents some transformation or processing in
the modeled system, be it a computer system or a real-world system. Actions are contained in
activities, which provide their

context. See: activity.

action sequence

An expression that resolves to a sequence of actions.

action state

A state that represents the execution of an atomic action, typically the invocation of an operation.
activation

The initiation of an action execution.

active class

A class whose instances are active objects. See: active object.

active object

An object that may execute its own behavior without requiring method invocation. This is
sometimes referred to as “the object having its own thread of control.” The points at which an
active object responds to communications from other objects are determined solely by the
behavior of the active object and not by the invoking object. This implies that an active object is
both autonomous and interactive to some degree. See: active class, thread.

activity

A specification of parameterized behavior that is expressed as a flow of execution via a
sequencing of subordinate units (whose primitive elements are individual actions). See actions.
activity diagram

A diagram that depicts behavior using a control and data-flow model.

actor

A construct that is employed in use cases that define a role that a user or any other system plays
when interacting with the system under consideration. It is a type of entity that interacts, but which
is itself external to the subject. Actors may represent human users, external hardware, or other
subjects. An actor does not necessarily represent a specific physical entity. For instance, a single
physical entity may play the role of several different actors and, conversely, a given actor may be
played by multiple physical entities.

actual parameter

Synonym: argument.

aggregate

A class that represents the “whole” in an aggregation (whole-part) relationship. See: aggregation.
aggregation

A special form of association that specifies a whole-part relationship between the aggregate
(whole) and a component part. See: composition.

analysis

The phase of the system development process whose primary purpose is to formulate a model of
the problem domain that is independent of implementation considerations. Analysis focuses on
what to do; design focuses on how to do it. Contrast: design.

analysis time

Refers to something that occurs during an analysis phase of the software development process.
See: design time, modeling time.

architecture



A coherent organizational structure of a system. An architecture can be hierarchically
decomposed into parts that interact via links that connect parts, and constraints for assembling
parts.

argument

A binding for a parameter that is resolved later. An independent variable.

artifact

A physical piece of information that is used or produced by a development process. Examples of
Artifacts include models, source files, scripts, and binary executable files. An artifact may
constitute the implementation of a deployable component. Synonym: product. Contrast:
component.

association

A relationship that may occur between instances of classifiers.

association class

A model element that has both association and class properties. An association class can be
seen as an association that also has class properties, or as a class that also has association
properties.

association end

The endpoint of an association, which connects the association to a classifier.

attribute

A structural feature of a classifier that characterizes instances of the classifier. An attribute relates
an instance of a classifier to a value or values through a named relationship.

auxiliary class

A stereotyped class that supports another more central or fundamental class, typically by
implementing secondary logic or control flow. Auxiliary classes are typically used together with
focus classes, and are particularly useful for specifying the secondary business logic or control
flow of components during design. See also: focus.

behavior

The observable effects of an operation or event, including its results. It specifies the computation
that generates the effects of the behavioral feature. The description of a behavior can take a
number of forms: interaction, state machine, activity, or procedure (a set of actions).

behavior diagram

A form of diagram that depict behavioral features.

behavioral feature

A dynamic feature of a model element, such as an operation or method.

behavioral model aspect

A model aspect that emphasizes the behavior of the instances in a system, including their
methods, collaborations, and state histories.

binary association

An association between two classes. A special case of an n-ary association.

binding

The creation of a model element from a template by supplying arguments for the parameters of
the template.

boolean

An enumeration whose values are true and false.

boolean expression

An expression that evaluates to a boolean value.

cardinality

The number of elements in a set. Contrast: multiplicity.

child

In a generalization relationship, the specialization of another element, the parent. See: subclass,
subtype. Contrast: parent.

call

An action state that invokes an operation on a classifier.

class

A classifier that describes of a set of objects that share the same specifications of features,
constraints, and semantics.



classifier

A collection of instances that have something in common. A classifier can have features that
characterize its instances. Classifiers include interfaces, classes, datatypes, and components.
classification

The assignment of an instance to a classifier. See dynamic classification, multiple classification
and static classification.

class diagram

A diagram that shows a collection of declarative (static) model elements, such as classes, types,
and their contents and relationships.

client

A classifier that requests a service from another classifier. Contrast: supplier.

collaboration

The specification of how an operation or classifier, such as a use case, is realized by a set of
classifiers and associations playing specific roles used in a specific way. The collaboration
defines an interaction. See: interaction.

collaboration occurrence

A particular use of a collaboration to explain the relationships between the parts of a classifier or
the properties of an operation. It may also be used to indicate how a collaboration represents a
classifier or an operation. A collaboration occurrence indicates a set of roles and connectors that
cooperate within the classifier or operation according to a given collaboration, indicated by the
type of the collaboration occurrence. There may be multiple occurrences of a given collaboration
within a classifier or operation, each involving a different set of roles and connectors. A given role
or connector may be involved in multiple occurrences of the same or different collaborations. See:
collaboration.

communication diagram

A diagram that focuses on the interaction between lifelines where the architecture of the internal
structure and how this corresponds with the message passing is central. The sequencing of
messages is given through a sequence numbering scheme. Sequence diagrams and
communication diagrams express similar information, but show it in different ways. See:
sequence diagram.

compile time

Refers to something that occurs during the compilation of a software module. See: modeling time,
run time.

component

A modular part of a system that encapsulates its contents and whose manifestation is replaceable
within its environment. A component defines its behavior in terms of provided and required
interfaces. As such, a component serves as a type, whose conformance is defined by these
provided and required interfaces (encompassing both their static as well as dynamic semantics).
component diagram

A diagram that shows the organizations and dependencies among components.

composite

A class that is related to one or more classes by a composition relationship. See: composition.
composite aggregation

Synonym: composition.

composite state

A state that consists of either concurrent (orthogonal) substates or sequential (disjoint) substates.
See: substate.

composite structure diagram

A diagram that depicts the internal structure of a classifier, including the interaction points of the
classifier to other parts of the system. It shows the configuration of parts that jointly perform the
behavior of the containing classifier. The architecture diagram specifies a set of instances playing
parts (roles), as well as their required relationships given in a particular context.

composition

A form of aggregation which requires that a part instance be included in at most one composite at
a time, and that the composite object is responsible for the creation and destruction of the parts.
Composition may be recursive. Synonym: composite aggregation.



concrete class

A class that can be directly instantiated. Contrast: abstract class.

concurrency

The occurrence of two or more activities during the same time interval. Concurrency can be
achieved by

interleaving or simultaneously executing two or more threads. See: thread.

concurrent substate

A substate that can be held simultaneously with other substates contained in the same composite
state. See: composite state. Contrast: disjoint substate.

connectable element

An abstract metaclass representing model elements which may be linked via connector. See:
connector.

connector

A link that enables communication between two or more instances. The link may be realized by
something as simple as a pointer or by something as complex as a network connection.
constraint

A semantic condition or restriction. It can be expressed in natural language text, mathematically
formal notation, or in a machine-readable language for the purpose of declaring some of the
semantics of a model element.

container

1. An instance that exists to contain other instances, and that provides operations to access or
iterate over its contents. (for example, arrays, lists, sets).

2. A component that exists to contain other components.

containment hierarchy

A namespace hierarchy consisting of model elements, and the containment relationships that
exist between them. A containment hierarchy forms a graph.

context

A view of a set of related modeling elements for a particular purpose, such as specifying an
operation.

data type

A type whose values have no identity (i.e., they are pure values). Data types include primitive
built-in types (such as integer and string) as well as enumeration types.

delegation

The ability of an object to issue a message to another object in response to a message.
Delegation can be used as an alternative to inheritance. Contrast: inheritance.

dependency

A relationship between two modeling elements, in which a change to one modeling element (the
independent element) will affect the other modeling element (the dependent element).
deployment diagram

A diagram that depicts the execution architecture of systems. It represents system artifacts as
nodes, which are connected through communication paths to create network systems of arbitrary
complexity. Nodes are typically defined in a nested manner, and represent either hardware
devices or software execution environments. See: component diagrams.

derived element

A model element that can be computed from another element, but that is shown for clarity or that
is included for design purposes even though it adds no semantic information.

design

The phase of the system development process whose primary purpose is to decide how the
system will be implemented. During design strategic and tactical decisions are made to meet the
required functional and quality requirements of a system.

design time

Refers to something that occurs during a design phase of the system development process. See:
modeling time. Contrast: analysis time.

development process

A set of partially ordered steps performed for a given purpose during system development, such
as constructing models or implementing models.



diagram

A graphical presentation of a collection of model elements, most often rendered as a connected
graph of arcs (relationships) and vertices (other model elements). UML supports the diagrams
listed in Appendix A.

disjoint substate

A substate that cannot be held simultaneously with other substates contained in the same
composite state. See: composite state. Contrast: concurrent substate.

distribution unit

A set of objects or components that are allocated to a process or a processor as a group. A
distribution unit can be represented by a run-time composite or an aggregate.

domain

An area of knowledge or activity characterized by a set of concepts and terminology understood
by practitioners in that area.

dynamic classification

The assignment of an instance from one classifier to another. Contrast: multiple classification,
static classification.

element

A constituent of a model.

entry action

An action that a method executes when an object enters a state in a state machine regardless of
the transition taken to reach that state.

enumeration

A data type whose instances a list of named values. For example, RGBColor = {red, green, blue}.
Boolean is a predefined enumeration with values from the set {false, true}.

event

The specification of a significant occurrence that has a location in time and space and can cause
the execution of an associated behavior. In the context of state diagrams, an event is an
occurrence that can trigger a transition.

exception

A special kind of signal, typically used to signal fault situations. The sender of the exception
aborts execution and execution resumes with the receiver of the exception, which may be the
sender itself. The receiver of an exception is determined implicitly by the interaction sequence
during execution; it is not explicitly specified.

execution occurrence

A unit of behavior within the lifeline as represented on an interaction diagram.

exit action

An action that a method executes when an object exits a state in a state machine regardless of
the transition taken to exit that state.

export

In the context of packages, to make an element visible outside its enclosing namespace. See:
visibility. Contrast: export [OMA], import.

expression

A string that evaluates to a value of a particular type. For example, the expression “(7 + 5 * 3)”
evaluates to a value of type number.

extend

A relationship from an extension use case to a base use case, specifying how the behavior
defined for the extension use case augments (subject to conditions specified in the extension) the
behavior defined for the base use case. The behavior is inserted at the location defined by the
extension point in the base use case. The base use case does not depend on performing the
behavior of the extension use case. See extension point, include.

extension

An aggregation that is used to indicate that the properties of a metaclass are extended through a
stereotype, and that gives the ability to flexibly add and remove stereotypes from classes.
facade

A stereotyped package containing only references to model elements owned by another package.
It is used to provide a ‘public view’ of some of the contents of a package.



feature

A property, such as an operation or attribute, that characterizes the instances of a classifier.
final state

A special kind of state signifying that the enclosing composite state or the entire state machine is
completed.

fire

To execute a state transition. See: transition.

focus class

A stereotyped class that defines the core logic or control flow for one or more auxiliary classes
that support it. Focus classes are typically used together with one or more auxiliary classes, and
are particularly useful for specifying the core business logic or control flow of components during
design. See also: auxiliary class.

focus of control

A symbol on a sequence diagram that shows the period of time during which an object is
performing an action, either directly or through a subordinate procedure.

formal parameter

Synonym: parameter.

framework

A stereotyped package that contains model elements which specify a reusable architecture for all
or part of a system. Frameworks typically include classes, patterns or templates. When
frameworks are specialized for an application domain, they are sometimes referred to as
application frameworks. See: pattern.

generalizable element

A model element that may participate in a generalization relationship. See: generalization.
generalization

A taxonomic relationship between a more general classifier and a more specific classifier. Each
instance of the specific classifier is also an indirect instance of the general classifier. Thus, the
specific classifier indirectly has features of the more general classifier. See: inheritance.

guard condition

A condition that must be satisfied in order to enable an associated transition to fire.
implementation

A definition of how something is constructed or computed. For example, a class is an
implementation of a type, a method is an implementation of an operation.

implementation class

A stereotyped class that specifies the implementation of a class in some programming language
(e.g., C++, Smalltalk, Java) in which an instance may not have more than one class. An
Implementation class is said to realize a type if it provides all of the operations defined for the
type with the same behavior as specified for the type's

operations. See also: type.

implementation inheritance

The inheritance of the implementation of a more general element. Includes inheritance of the
interface. Contrast: interface inheritance.

import

In the context of packages, a dependency that shows the packages whose classes may be
referenced within a given package (including packages recursively embedded within it). Contrast:
export.

include

A relationship from a base use case to an inclusion use case, specifying how the behavior for the
base use case contains the behavior of the inclusion use case. The behavior is included at the
location which is defined in the base use case. The base use case depends on performing the
behavior of the inclusion use case, but not on its structure (i.e., attributes or operations). See
extend.

inheritance

The mechanism by which more specific elements incorporate structure and behavior of more
general elements. See generalization.

initial state



A special kind of state signifying the source for a single transition to the default state of the
composite state.

instance

An entity that has unique identity, a set of operations that can be applied to it, and state that
stores the effects of the operations. See: object.

interaction

A specification of how stimuli are sent between instances to perform a specific task. The
interaction is defined in the context of a collaboration. See collaboration.

interaction diagram

A generic term that applies to several types of diagrams that emphasize object interactions.
These include

communication diagrams, sequence diagrams, and the interaction overview diagram.
interaction overview diagram

A diagram that depicts interactions through a variant of activity diagrams in a way that promotes
overview of the control flow. It focuses on the overview of the flow of control where each node
can be an interaction diagram.

interface

A named set of operations that characterize the behavior of an element.

interface inheritance

The inheritance of the interface of a more general element. Does not include inheritance of the
implementation. Contrast: implementation inheritance.

internal transition

A transition signifying a response to an event without changing the state of an object.

layer

The organization of classifiers or packages at the same level of abstraction. A layer may
represent a horizontal slice through an architecture, whereas a partition represents a vertical
slice. Contrast: partition.

lifeline

A modeling element that represents an individual participant in an interaction. A lifeline represents
only one interacting entity.

link

A semantic connection among a tuple of objects. An instance of an association. See: association.
link end

An instance of an association end. See: association end.

message

A specification of the conveyance of information from one instance to another, with the
expectation that activity will ensue. A message may specify the raising of a signal or the call of an
operation.

metaclass

A class whose instances are classes. Metaclasses are typically used to construct metamodels.
meta-metamodel

A model that defines the language for expressing a metamodel. The relationship between a meta-
metamodel and a metamodel is analogous to the relationship between a metamodel and a model.
metamodel

A model that defines the language for expressing a model.

metaobject

A generic term for all metaentities in a metamodeling language. For example, metatypes,
metaclasses, metaattributes, and metaassociations.

method

The implementation of an operation. It specifies the algorithm or procedure associated with an
operation.

model

A representation of a set of modules of a process, system, or subject area along with a
representation of data, activities, relationships, and constraints, generally developed for
understanding, analysis, improvement, and/or replacement of the process.

model aspect



A dimension of modeling that emphasizes particular qualities of the metamodel. For example, the
structural model aspect emphasizes the structural qualities of the metamodel.

model elaboration

The process of generating a repository type from a published model. Includes the generation of
interfaces and implementations which allows repositories to be instantiated and populated based
on, and in compliance with, the model elaborated.

model element

An element that is an abstraction drawn from the system being modeled. Contrast: view element.
model library

A stereotyped package that contains model elements that are intended to be reused by other
packages. A model library differs from a profile in that a model library does not extend the
metamodel using stereotypes and tagged definitions. A model library is analogous to a class
library in some programming languages.

modeling time

Refers to something that occurs during a modeling phase of the system development process. It
includes analysis time and design time. Usage note: When discussing object systems, it is often
important to distinguish between modeling-time and run-time concerns. See: analysis time,
design time. Contrast: run time.

module

A separate and distinct unit of a process, system, or subject area that may be used as a
conceptual component of a model or a part in a system.

multiple classification

The assignment of an instance directly to more than one classifier at the same time. See: static
classification,

dynamic classification.

multiple inheritance

A semantic variation of generalization in which a type may have more than one supertype.
Contrast: single inheritance.

multiplicity

A specification of the range of allowable cardinalities that a set may assume. Multiplicity
specifications may be given for association ends, parts within composites, repetitions, and other
purposes. Essentially a multiplicity is a (possibly infinite) subset of the non-negative integers.
Contrast: cardinality.

n-ary association

An association among three or more classes. Each instance of the association is an n-tuple of
values from the respective classes. Contrast: binary association.

name

A string used to identify a model element.

namespace

A part of the model in which the names may be defined and used. Within a namespace, each
name has a unique meaning. See: hame.

node

A classifier that represents a run-time computational resource, which generally has at least
memory and often processing capability. Run-time objects and components may reside on nodes.
note

An annotation attached to an element or a collection of elements. A note has no semantics.
Contrast: constraint.

object

An instance of a class. See: class, instance.

object diagram

A diagram that encompasses objects and their relationships at a point in time. An object diagram
may be considered a special case of a class diagram or a communication diagram. See: class
diagram, communication diagram.

object flow state

A state in an activity diagram that represents the passing of an object from the output of actions in
one state to the input of actions in another state.



object lifeline

A line in a sequence diagram that represents the existence of an object over a period of time.
See: sequence diagram.

operation

A feature which declares a service that can be performed by instances of the classifier of which
they are instances.

package

A general purpose mechanism for organizing elements into groups. Packages may be nested
within other packages.

package diagram

A diagram that depicts how model elements are organized into packages and the dependencies
among them, including package imports and package extensions.

parameter

An argument of a behavioral feature. A parameter specifies arguments that are passed into or out
of an invocation of a behavioral element like an operation. A parameter’s type restricts what
values can be passed. Synonyms: formal parameter. Contrast: argument.

parameterized element

The descriptor for a class with one or more unbound parameters. Synonym: template.

parent

In a generalization relationship, the generalization of another element, the child. See: subclass,
subtype. Contrast: child.

part

An element representing a set of instances that are owned by a containing classifier instance or
role of a classifier. (See role.) Parts may be joined by attached connectors and specify
configurations of linked instances to be created within an instance of the containing classifier.
participate

The connection of a model element to a relationship or to a reified relationship. For example, a
class participates in an association, an actor participates in a use case.

partition

A grouping of any set of model elements based on a set of criteria.

1. activity diagram: A grouping of activity nodes and edges. Partitions divide the nodes and edge
to constrain and show a view of the contained nodes. Partitions can share contents. They often
correspond to organizational units in a business model. They may be used to allocate
characteristics or resources among the nodes of an activity.

2. architecture: A set of related classifiers or packages at the same level of abstraction or across
layers in a layered architecture. A partition represents a vertical slice through an architecture,
whereas a layer represents a horizontal slice. Contrast: layer.

pattern

A template collaboration that describes the structure of a design pattern. UML patterns are more
limited than those used by the design pattern community. In general, design patterns involve
many non-structural aspects, such as heuristics for their use and usage trade-offs.

persistent object

An object that exists after the process or thread that created it has ceased to exist.

pin

A model element that represents the data values passed into a behavior upon its invocation as
well as the data values returned from a behavior upon completion of its execution.

port

A feature of a classifier that specifies a distinct interaction point between that classifier and its
environment or between the (behavior of the) classifier and its internal parts. Ports are connected
to other ports through connectors through which requests can be made to invoke the behavioral
features of a classifier.

postcondition

A constraint expresses a condition that must be true at the completion of an operation.
powertype

A classifier whose instances are also subclasses of another classifier. Power types, then, are
metaclasses with an extra twist: the instances are also subclasses.



precondition

A constraint expresses a condition that must be true when an operation is invoked.

primitive type

A pre-defined data type without any relevant substructure (i.e., is hot decomposable) such as an
integer or a string. It may have an algebra and operations defined outside of UML, for example,
mathematically.

procedure

A set of actions that may be attached as a unit to other parts of a model, for example, as the body
of a method. Conceptually a procedure, when executed, takes a set of values as arguments and
produces a set of values as results, as specified by the parameters of the procedure.

process

1. A heavyweight unit of concurrency and execution in an operating system. Contrast: thread,
which includes heavyweight and lightweight processes. If necessary, an implementation
distinction can be made using stereotypes.

2. A software development process—the steps and guidelines by which to develop a system.

3. To execute an algorithm or otherwise handle something dynamically.

profile

A stereotyped package that contains model elements that have been customized for a specific
domain or purpose using extension mechanisms, such as stereotypes, tagged definitions and
constraints. A profile may also specify model libraries on which it depends and the metamodel
subset that it extends.

projection

A mapping from a set to a subset of it.

property

A named value denoting a characteristic of an element. A property has semantic impact. Certain
properties are predefined in the UML; others may be user defined. See: tagged value.
pseudo-state

A vertex in a state machine that has the form of a state, but doesn’t behave as a state. Pseudo-
states include initial and history vertices.

physical system

1. The subject of a model.

2. A collection of connected physical units, which can include software, hardware and people, that
are organized to accomplish a specific purpose. A physical system can be described by one or
more models, possibly from different viewpoints. Contrast: system.

qgualifier

An association attribute or tuple of attributes whose values partition the set of objects related to
an object across an association.

realization

A specialized abstraction relationship between two sets of model elements, one representing a
specification (the supplier) and the other representing an implementation of the latter (the client).
Realization can be used to model stepwise refinement, optimizations, transformations, templates,
model synthesis, framework composition, etc.

receive [a message]

The handling of a stimulus passed from a sender instance. See: sender, receiver.

receiver

The object handling a stimulus passed from a sender object. Contrast: sender.

reception

A declaration that a classifier is prepared to react to the receipt of a signal.

reference

1. A denotation of a model element.

2. A named slot within a classifier that facilitates navigation to other classifiers. Synonym: pointer.
refinement

A relationship that represents a fuller specification of something that has already been specified
at a certain level of detail. For example, a design class is a refinement of an analysis class.
relationship



An abstract concept that specifies some kind of connection between elements. Examples of
relationships include associations and generalizations.

repository

A facility for storing object models, interfaces, and implementations.

requirement

A desired feature, property, or behavior of a system.

responsibility

A contract or obligation of a classifier.

reuse

The use of a pre-existing artifact.

role

The named set of features defined over a collection of entities participating in a particular context.
Collaboration: The named set of behaviors possessed by a class or part participating in a
particular context.

Part: a subset of a particular class which exhibits a subset of features possessed by the class
Associations: A synonym for association end often referring to a subset of classifier instances that
are participating in the association.

run time

The period of time during which a computer program or a systemexecutes. Contrast: modeling
time.

scenario

A specific sequence of actions that illustrates behaviors. A scenario may be used to illustrate an
interaction or the execution of a use case instance. See: interaction.

semantic variation point

A point of variation in the semantics of a metamodel. It provides an intentional degree of freedom
for the interpretation of the metamodel semantics.

send [a message]

The passing of a stimulus from a sender instance to a receiver instance. See: sender, receiver.
sender

The object passing a stimulus to a receiver instance. Contrast: receiver.

sequence diagram

A diagram that depicts an interaction by focusing on the sequence of messages that are
exchanged, along with their corresponding event occurrences on the lifelines. Unlike a
communication diagram, a sequence diagram includes time sequences but does not include
object relationships. A sequence diagram can exist in a generic form (describes all possible
scenarios) and in an instance form (describes one actual scenario). Sequence diagrams and
communication diagrams express similar information, but show it in different ways. See:
communication diagram.

signal

The specification of an asynchronous stimulus that triggers a reaction in the receiver in an
asynchronous way and without a reply. The receiving object handles the signal as specified by its
receptions. The data carried by a send request and passed to it by the occurrence of the send
invocation event that caused the request is represented as attributes of the signal instance. A
signal is defined independently of the classifiers handling the signal.

signature

The name and parameters of a behavioral feature. A signature may include an optional returned
parameter.

single inheritance

A semantic variation of generalization in which a type may have only one supertype. Synonym:
multiple inheritance [OMA]. Contrast: multiple inheritance.

slot

A specification that an entity modeled by an instance specification has a value or values for a
specific structural feature.

software module

A unit of software storage and manipulation. Software modules include source code modules,
binary code modules, and executable code modules.



specification

A set of requirements for a system or other classifier. Contrast: implementation.

state

A condition or situation during the life of an object during which it satisfies some condition,
performs some activity, or waits for some event. Contrast: state [OMA].

state machine diagram

A diagram that depicts discrete behavior modeled through finite state-transition systems. In
particular, it specifies the sequences of states that an object or an interaction goes through during
its life in response to events, together with its responses and actions. See: state machine.

state machine

A behavior that specifies the sequences of states that an object or an interaction goes through
during its life in response to events, together with its responses and actions.

static classification

The assignment of an instance to a classifier where the assignment may not change to any other
classifier. Contrast: dynamic classification.

stereotype

A class that defines how an existing metaclass (or stereotype) may be extended, and enables the
use of platform or domain specific terminology or notation in addition to the ones used for the
extended metaclass. Certain stereotypes are predefined in the UML, others may be user defined.
Stereotypes are one of the extensibility mechanisms in UML. See: constraint, tagged value.
stimulus

The passing of information from one instance to another, such as raising a signal or invoking an
operation. The receipt of a signal is normally considered an event. See: message.

string

A sequence of text characters. The details of string representation depend on implementation,
and may include character sets that support international characters and graphics.

structural feature

A static feature of a model element, such as an attribute.

structural model aspect

A model aspect that emphasizes the structure of the objects in a system, including their types,
classes, relationships, attributes, and operations.

structure diagram

A form of diagram that depicts the elements in a specification that are irrespective of time. Class
diagrams and component diagrams are examples of structure diagrams.

subactivity state

A state in an activity diagram that represents the execution of a hon-atomic sequence of steps
that has some duration.

subclass

In a generalization relationship, the specialization of another class, the superclass. See:
generalization. Contrast: superclass.

submachine state

A state in a state machine that is equivalent to a composite state but whose contents are
described by another state machine.

substate

A state that is part of a composite state. See: concurrent state, disjoint state.

subpackage

A package that is contained in another package.

subsystem

A unit of hierarchical decomposition for large systems. A subsystem is commonly instantiated
indirectly. Definitions of subsystems vary widely among domains and methods, and it is expected
that domain and method profiles will specialize this construct. A subsystem may be defined to
have specification and realization elements.

subtype

In a generalization relationship, the specialization of another type, the supertype. See:
generalization. Contrast; supertype.

superclass



In a generalization relationship, the generalization of another class, the subclass. See:
generalization. Contrast: subclass.

supertype

In a generalization relationship, the generalization of another type, the subtype. See:
generalization. Contrast: subtype.

supplier

A classifier that provides services that can be invoked by others. Contrast: client.

synch state

A vertex in a state machine used for synchronizing the concurrent regions of a state machine.
system

An organized array of elements functioning as a unit Also, a top-level subsystem in a model.
tagged value

The explicit definition of a property as a name-value pair. In a tagged value, the name is referred
as the tag. Certain tags are predefined in the UML; others may be user defined. Tagged values
are one of three extensibility mechanisms in UML. See: constraint, stereotype.

template

Synonym: parameterized element.

thread [of control]

A single path of execution through a program, a dynamic model, or some other representation of
control flow. Also, a stereotype for the implementation of an active object as lightweight process.
See process.

time event

An event that denotes the time elapsed since the current state was entered. See: event.

time expression

An expression that resolves to an absolute or relative value of time.

timing diagram

An interaction diagram that shows the change in state or condition of a lifeline (representing a
Classifier Instance or Classifier Role) over linear time. The most common usage is to show the
change in state of an object over time in response to accepted events or stimuli.

top level

A stereotype denoting the top-most package in a containment hierarchy. The topLevel stereotype
defines the outer limit for looking up names, as namespaces “see” outwards. For example,
opLevel subsystem represents the top of the subsystem containment hierarchy.

trace

A dependency that indicates a historical or process relationship between two elements that
represent the same concept without specific rules for deriving one from the other.

transient object

An object that exists only during the execution of the process or thread that created it.
transition

A relationship between two states indicating that an object in the first state will perform certain
specified actions and enter the second state when a specified event occurs and specified
conditions are satisfied. On such a change of state, the transition is said to fire.

type

A stereotyped class that specifies a domain of objects together with the operations applicable to
the objects, without defining the physical implementation of those objects. A type may not contain
any methods, maintain its own thread of control, or be nested. However, it may have attributes
and associations. Although an object may have at most one implementation class, it may conform
to multiple different types. See also: implementation class Contrast: interface.

type expression

An expression that evaluates to a reference to one or more types.

uninterpreted

A placeholder for a type or types whose implementation is not specified by the UML. Every
uninterpreted value has a corresponding string representation. See: any [CORBA].

usage

A dependency in which one element (the client) requires the presence of another element (the
supplier) for its correct functioning or implementation.



use case
The specification of a sequence of actions, including variants, that a system (or other entity) can
perform, interacting with actors of the system. See: use case instances.

use case diagram

A diagram that shows the relationships among actors and the subject (system), and use cases.
use case instance

The performance of a sequence of actions being specified in a use case. An instance of a use
case. See: use case class.

use case model

A model that describes a system’s functional requirements in terms of use cases.

utility

A stereotype that groups global variables and procedures in the form of a class declaration. The
utility attributes and operations become global variables and global procedures, respectively. A
utility is not a fundamental modeling construct, but a programming convenience.

value

An element of a type domain.

vertex

A source or a target for a transition in a state machine. A vertex can be either a state or a
pseudo-state. See: state, pseudo-state.

view

A projection of a model that is seen from a given perspective or vantage point and omits entities
that are not relevant to this perspective.

view element

A textual and/or graphical projection of a collection of model elements.

view projection

A projection of model elements onto view elements. A view projection provides a location and a
style for each view

element.

visibility

An enumeration whose value (public, protected, or private) denotes how the model element to
which it refers may be seen outside its enclosing namespace.



