
16 Use Cases

16.1 Overview
Use cases are a means for specifying required usages of a system. Typically, they are used to capture the requirements of
a system, that is, what a system is supposed to do. The key concepts associated with use cases are actors, use cases, and
the subject. The subject is the system under consideration to which the use cases apply. The users and any other systems
that may interact with the subject are represented as actors. Actors always model entities that are outside the system. The
required behavior of the subject is specified by one or more use cases, which are defined according to the needs of actors.

Strictly speaking, the term “use case” refers to a use case type. An instance of a use case refers to an occurrence of the
emergent behavior that conforms to the corresponding use case type. Such instances are often described by interaction
specifications.

Use cases, actors, and systems are described using use case diagrams.

16.2 Abstract syntax

Figure 16.1 - Dependencies of the UseCases package

UseCases

BasicBehaviors

<<merge>>
UML Superstructure Specification, v2.0 569

Figure 16.2 - The concepts used for modeling use cases

16.3 Class Descriptions

16.3.1 Actor (from UseCases)

An actor specifies a role played by a user or any other system that interacts with the subject. (The term “role” is used
informally here and does not necessarily imply the technical definition of that term found elsewhere in this specification.)

Generalizations

• “Classifier (from UseCases)” on page 572

Description
An Actor models a type of role played by an entity that interacts with the subject (e.g., by exchanging signals and data),
but which is external to the subject (i.e., in the sense that an instance of an actor is not a part of the instance of its
corresponding subject). Actors may represent roles played by human users, external hardware, or other subjects. Note that
an actor does not necessarily represent a specific physical entity but merely a particular facet (i.e., “role”) of some entity
that is relevant to the specification of its associated use cases. Thus, a single physical instance may play the role of
several different actors and, conversely, a given actor may be played by multiple different instances.

DirectedRelationship
(from Kernel)

RedefinableElement
(from Kernel)

BehavioredClassifier
(from BasicBehaviors)

Actor

NamedElement
(from Kernel)

Constrai nt
(f rom Kernel)

Include

ExtensionPoint

Extend

0..1

0..1

+conditi on

0..1

{subsets ownedElement}

0..1

1.. *

*

+extensionLocation1.. *
{ordered}

*

Classifier

UseCase

1

*

+includingCase 1
{subsets source}

+include
*{subsets ownedMember}

1

*

+addition1

{subsets target}

*

* 1

+extensionPoint

*

{subsets ownedMember}
+useCase

1
1

*

+extendedCase1

{subsets target}

*

1

*

+extension
1

{subsets source}

+extend
*{subsets ownedMember}

*

0..1

+ownedUseCase

*{subsets ownedMember}

0..1 *

*

+subject*

+useCase*
570 UML Superstructure Specification, v2.0

Since an actor is external to the subject, it is typically defined in the same classifier or package that incorporates the
subject classifier.

Attributes
No additional attributes

Associations
No additional associations

Constraints
[1] An actor can only have associations to use cases, components, and classes. Furthermore these associations must be binary.

self.ownedAttribute->forAll (a |
(a.association->notEmpty()) implies

((a.association.memberEnd.size() = 2) and
 (a.opposite.class.oclIsKindOf(UseCase) or
 (a.opposite.class.oclIsKindOf(Class) and not a.opposite.class.oclIsKindOf(Behavior))))

[2] An actor must have a name.
name->notEmpty()

Semantics
Actors model entities external to the subject. When an external entity interacts with the subject, it plays the role of a
specific actor.

When an actor has an association to a use case with a multiplicity that is greater than one at the use case end, it means
that a given actor can be involved in multiple use cases of that type. The specific nature of this multiple involvement
depends on the case on hand and is not defined in this specification. Thus, an actor may initiate multiple use cases in
parallel (concurrently) or they may be mutually exclusive in time. For example, a computer user may activate a given
software application multiple times concurrently or at different points in time.

Notation
An actor is represented by “stick man” icon with the name of the actor in the vicinity (usually above or below) the icon.

Presentation Options
An actor may also be shown as a class rectangle with the keyword «actor», with the usual notation for all compartments.

Customer

«actor»

Customer
UML Superstructure Specification, v2.0 571

Other icons that convey the kind of actor may also be used to denote an actor, such as using a separate icon for non-
human actors.

Style Guidelines
Actor names should follow the capitalization and punctuation guidelines used for classes in the model. The names of
abstract actors should be shown in italics.

Changes from previous UML
There are no changes to the Actor concept except for the addition of a constraint that requires that all actors must have
names.

16.3.2 Classifier (from UseCases)

Generalizations

• “Classifier (from Kernel, Dependencies, PowerTypes)” on page 48 (merge increment)

Description
Extends a classifier with the capability to own use cases. Although the owning classifier typically represents the subject
to which the owned use cases apply, this is not necessarily the case. In principle, the same use case can be applied to
multiple subjects, as identified by the subject association role of a UseCase (see “UseCase (from UseCases)” on page
578).

Attributes
No additional attributes

Associations
• ownedUseCase: UseCase[*] References the use cases owned by this classifier.

(Subsets Namespace.ownedMember)

• useCase : UseCase [*] The set of use cases for which this Classifier is the subject.

Constraints
No additional constraints

Semantics
See “UseCase (from UseCases)” on page 578.

User
572 UML Superstructure Specification, v2.0

Notation
The nesting (owning) of a use case by a classifier is represented using the standard notation for nested classifiers.

Rationale
This extension to the Classifier concept was added to allow classifiers in general to own use cases.

Changes from previous UML
No changes

16.3.3 Extend (from UseCases)

A relationship from an extending use case to an extended use case that specifies how and when the behavior defined in
the extending use case can be inserted into the behavior defined in the extended use case.

Generalizations

• “DirectedRelationship (from Kernel)” on page 59

Description
This relationship specifies that the behavior of a use case may be extended by the behavior of another (usually
supplementary) use case. The extension takes place at one or more specific extension points defined in the extended use
case. Note, however, that the extended use case is defined independently of the extending use case and is meaningful
independently of the extending use case. On the other hand, the extending use case typically defines behavior that may
not necessarily be meaningful by itself. Instead, the extending use case defines a set of modular behavior increments that
augment an execution of the extended use case under specific conditions.

Note that the same extending use case can extend more than one use case. Furthermore, an extending use case may itself
be extended.

It is a kind of DirectedRelationship, such that the source is the extending use case and the destination is the extended use
case. It is also a kind of NamedElement so that it can have a name in the context of its owning use case. The extend
relationship itself is owned by the extending use case.

Attributes
No additional attributes

Associations
• extendedCase : UseCase [1] References the use case that is being extended.

(Specializes DirectedRelationship.target)

DepartmentStore

MakePurchase
UML Superstructure Specification, v2.0 573

• extension : UseCase [1] References the use case that represents the extension and owns the extend relationship.
(Specializes DirectedRelationship.source)

• condition : Constraint [0..1] References the condition that must hold when the first extension point is reached for the
extension to take place. If no constraint is associated with the extend relationship, the
extension is unconditional. (Specializes Element.ownedElement)

• extensionLocation: ExtensionPoint [1..*] An ordered list of extension points belonging to the extended use case,
specifying where the respective behavioral fragments of the extending use
case are to be inserted. The first fragment in the extending use case is
associated with the first extension point in the list, the second fragment
with the second point, and so on. (Note that, in most practical cases, the
extending use case has just a single behavior fragment, so that the list
of extension points is trivial.)

Constraints
[1] The extension points referenced by the extend relationship must belong to the use case that is being extended.

extensionLocation->forAll (xp | extendedCase.extensionPoint->includes(xp))

Semantics
The concept of an “extension location” is intentionally left underspecified because use cases are typically specified in
various idiosyncratic formats such as natural language, tables, trees, etc. Therefore, it is not easy to capture its structure
accurately or generally by a formal model. The intuition behind the notion of extension location is best explained through
the example of a textually described use case: Usually, a use case with extension points consists of a set of finer-grained
behavioral fragment descriptions, which are most often executed in sequence. This segmented structuring of the use case
text allows the original behavioral description to be extended by merging in supplementary behavioral fragment
descriptions at the appropriate insertion points between the original fragments (extension points). Thus, an extending use
case typically consists of one or more behavior fragment descriptions that are to be inserted into the appropriate spots of
the extended use case. An extension location, therefore, is a specification of all the various (extension) points in a use
case where supplementary behavioral increments can be merged.

If the condition of the extension is true at the time the first extension point is reached during the execution of the
extended use case, then all of the appropriate behavior fragments of the extending use case will also be executed. If the
condition is false, the extension does not occur. The individual fragments are executed as the corresponding extension
points of the extending use case are reached. Once a given fragment is completed, execution continues with the behavior
of the extended use case following the extension point. Note that even though there are multiple use cases involved, there
is just a single behavior execution.

Notation
An extend relationship between use cases is shown by a dashed arrow with an open arrowhead from the use case
providing the extension to the base use case. The arrow is labeled with the keyword «extend». The condition of the
relationship as well as the references to the extension points are optionally shown in a Note attached to the corresponding
extend relationship.(See Figure 16.3.)
574 UML Superstructure Specification, v2.0

Examples

Figure 16.3 - Example of an extend relationship between use cases

In the use case diagram above, the use case “Perform ATM Transaction” has an extension point “Selection.” This use case
is extended via that extension point by the use case “On-Line Help” whenever execution of the “Perform ATM
Transaction” use case occurrence is at the location referenced by the “Selection” extension point and the customer selects
the HELP key. Note that the “Perform ATM Transaction” use case is defined independently of the “On-Line Help” use
case.

Rationale
This relationship is intended to be used when there is some additional behavior that should be added, possibly
conditionally, to the behavior defined in another use case (which is meaningful independently of the extending use case).

Changes from previous UML
The notation for conditions has been changed such that the condition and the referenced extension points may now be
included in a Note attached to the extend relationship, instead of merely being a textual comment that is located in the
vicinity of the relationship.

16.3.4 ExtensionPoint (from UseCases)

An extension point identifies a point in the behavior of a use case where that behavior can be extended by the behavior of
some other (extending) use case, as specified by an extend relationship.

Generalizations

• “RedefinableElement (from Kernel)” on page 125

Description
An ExtensionPoint is a feature of a use case that identifies a point where the behavior of a use case can be augmented
with elements of another (extending) use case.

Attributes
No additional attributes

Associations
No additional associations

Perform ATM Transaction On-Line Help

«extend»

Condition: {customer selected HELP}
extension point: Selection

extension points
Selection
UML Superstructure Specification, v2.0 575

Constraints
[1] An ExtensionPoint must have a name.

self.name->notEmpty ()

Semantics
An extension point is a reference to a location within a use case at which parts of the behavior of other use cases may be
inserted. Each extension point has a unique name within a use case.

Semantic Variation Points
The specific manner in which the location of an extension point is defined is left as a semantic variation point.

Notation
Extension points are indicated by a text string within in the use case oval symbol or use case rectangle according to the
syntax below:

<extension point> ::= <name> [: <explanation>]

Note that explanation, which is optional, may be any informal text or a more precise definition of the location in the
behavior of the use case where the extension point occurs.

Examples

See Figure 16.3 on page 575 and Figure 16.9 on page 582.

Rationale
ExtensionPoint supports the use case extension mechanism (see “Extend (from UseCases)” on page 573).

Changes from previous UML
In 1.x, ExtensionPoint was modeled as a kind of ModelElement, which due to a multiplicity constraint, was always
associated with a specific use case. This relationship is now modeled as an owned feature of a use case. Semantically, this
is equivalent and the change will not be visible to users.

ExtensionPoints in 1.x had an attribute called location, which was a kind of LocationReference. Since the latter had no
specific semantics it was relegated to a semantic variation point. When converting to UML 2.0, models in which
ExtensionPoints had a location attribute defined, the contents of the attribute should be included in a note attached to the
ExtensionPoint.

16.3.5 Include (from UseCases)

An include relationship defines that a use case contains the behavior defined in another use case.

Generalizations

• “DirectedRelationship (from Kernel)” on page 59
576 UML Superstructure Specification, v2.0

Description
Include is a DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted
into the behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the context of
its owning use case. The including use case may only depend on the result (value) of the included use case. This value is
obtained as a result of the execution of the included use case.

Note that the included use case is not optional, and is always required for the including use case to execute correctly.

Attributes
No additional attributes

Associations
• addition : UseCase [1] References the use case that is to be included. (Specializes

DirectedRelationship.target)

• including Case : UseCase [1] References the use case that will include the addition and owns the include relationship.
(Specializes DirectedRelationship.source)

Constraints
No additional constraints

Semantics
An include relationship between two use cases means that the behavior defined in the including use case is included in the
behavior of the base use case. The include relationship is intended to be used when there are common parts of the
behavior of two or more use cases. This common part is then extracted to a separate use case, to be included by all the
base use cases having this part in common. Since the primary use of the include relationship is for reuse of common parts,
what is left in a base use case is usually not complete in itself but dependent on the included parts to be meaningful. This
is reflected in the direction of the relationship, indicating that the base use case depends on the addition but not vice
versa.

Execution of the included use case is analogous to a subroutine call. All of the behavior of the included use case is
executed at a single location in the included use case before execution of the including use case is resumed.

Notation
An include relationship between use cases is shown by a dashed arrow with an open arrowhead from the base use case to
the included use case. The arrow is labeled with the keyword «include». (See Figure 16.4.)

Examples

A use case “Withdraw” includes an independently defined use case “Card Identification.”

Figure 16.4 - Example of the Include relationship

Withdraw Card
Identification

«include»
UML Superstructure Specification, v2.0 577

Rationale
The Include relationship allows hierarchical composition of use cases as well as reuse of use cases.

Changes from previous UML
There are no changes to the semantics or notation of the Include relationship relative to UML 1.x.

16.3.6 UseCase (from UseCases)

A use case is the specification of a set of actions performed by a system, which yields an observable result that is,
typically, of value for one or more actors or other stakeholders of the system.

Generalizations

• “BehavioredClassifier (from BasicBehaviors, Communications)” on page 419

Description
A UseCase is a kind of behaviored classifier that represents a declaration of an offered behavior. Each use case specifies
some behavior, possibly including variants, that the subject can perform in collaboration with one or more actors. Use
cases define the offered behavior of the subject without reference to its internal structure. These behaviors, involving
interactions between the actor and the subject, may result in changes to the state of the subject and communications with
its environment. A use case can include possible variations of its basic behavior, including exceptional behavior and error
handling.

The subject of a use case could be a physical system or any other element that may have behavior, such as a component,
subsystem, or class. Each use case specifies a unit of useful functionality that the subject provides to its users (i.e., a
specific way of interacting with the subject). This functionality, which is initiated by an actor, must always be completed
for the use case to complete. It is deemed complete if, after its execution, the subject will be in a state in which no further
inputs or actions are expected and the use case can be initiated again or in an error state.

Use cases can be used both for specification of the (external) requirements on a subject and for the specification of the
functionality offered by a subject. Moreover, the use cases also state the requirements the specified subject poses on its
environment by defining how they should interact with the subject so that it will be able to perform its services.

The behavior of a use case can be described by a specification that is some kind of Behavior (through its ownedBehavior
relationship), such as interactions, activities, and state machines, or by pre-conditions and post-conditions as well as by
natural language text where appropriate. It may also be described indirectly through a Collaboration that uses the use case
and its actors as the classifiers that type its parts. Which of these techniques to use depends on the nature of the use case
behavior as well as on the intended reader. These descriptions can be combined. An example of a use case with an
associated state machine description is shown in Figure 16.6.

Attributes
No additional attributes

Associations
• subject : Classifier[*] References the subjects to which this use case applies. The subject or its parts realize all

the use cases that apply to this subject. Use cases need not be attached to any specific
subject, however. The subject may, but need not, own the use cases that apply to it.
578 UML Superstructure Specification, v2.0

• include : Include[*] References the Include relationships owned by this use case.
(Specializes Classifier.feature and Namespace.ownedMember)

• extend : Extend[*] References the Extend relationships owned by this use case.
(Specializes Classifier.feature and Namespace.ownedMember)

• extensionPoint: ExtensionPoint[*] References the ExtensionPoints owned by the use case.
(Specializes Namespace.ownedMember)

Constraints
[1] A UseCase must have a name.

self.name -> notEmpty ()

[2] UseCases can only be involved in binary Associations.

[3] UseCases cannot have Associations to UseCases specifying the same subject.

[4] A use case cannot include use cases that directly or indirectly include it.
not self.allIncludedUseCases()->includes(self)

Additional Operations
[1] The query allIncludedUseCases() returns the transitive closure of all use cases (directly or indirectly) included by this use

case.
UseCase::allIncludedUseCases() : Set(UseCase)
allIncludedUseCases = self.include->union(self.include->collect(in | in.allIncludedUseCases())

Semantics
An execution of a use case is an occurrence of emergent behavior.

Every instance of a classifier realizing a use case must behave in the manner described by the use case.

Use cases may have associated actors, which describes how an instance of the classifier realizing the use case and a user
playing one of the roles of the actor interact. Two use cases specifying the same subject cannot be associated since each
of them individually describes a complete usage of the subject. It is not possible to state anything about the internal
behavior of the actor apart from its communications with the subject.

When a use case has an association to an actor with a multiplicity that is greater than one at the actor end, it means that
more than one actor instance is involved in initiating the use case. The manner in which multiple actors participate in the
use case depends on the specific situation on hand and is not defined in this specification. For instance, a particular use
case might require simultaneous (concurrent) action by two separate actors (e.g., in launching a nuclear missile) or it
might require complementary and successive actions by the actors (e.g., one actor starting something and the other one
stopping it).

Notation
A use case is shown as an ellipse, either containing the name of the use case or with the name of the use case placed
below the ellipse. An optional stereotype keyword may be placed above the name and a list of properties included below
the name. If a subject (or system boundary) is displayed, the use case ellipse is visually located inside the system
boundary rectangle. Note that this does not necessarily mean that the subject classifier owns the contained use cases, but
merely that the use case applies to that classifier. For example, the use cases shown in Figure 16.5 on page 580 apply to
the “ATMsystem” classifier but are owned by various packages as shown in Figure 16.7.
UML Superstructure Specification, v2.0 579

Figure 16.5 - Example of the use cases and actors for an ATM system

Figure 16.6 - Example of a use case with an associated state machine behavior

Customer

Administrator

«subsystem»
ATMsystem

Bank

Withdraw

Transfer Funds

Deposit
Money

Register ATM
at Bank

Read Log

0..1

1

0..1
1

0..1

1

0..11

0..1

1

0..*

1

0..*

1

statemachine Call

Dialing

Ringing

Talking

lastDigit

answer
onHook

usecase MakeCall
580 UML Superstructure Specification, v2.0

Figure 16.7 - Example of use cases owned by various packages

Extension points may be listed in a compartment of the use case with the heading extension points. The description of
the locations of the extension point is given in a suitable form, usually as ordinary text, but can also be given in other
forms, such as the name of a state in a state machine, an activity in an activity diagram, a precondition, or a postcondition.

Use cases may have other associations and dependencies to other classifiers (e.g., to denote input/output, events, and
behaviors).

The detailed behavior defined by a use case is notated according to the chosen description technique, in a separate
diagram or textual document. Operations and attributes are shown in a compartment within the use case.

Use cases and actors may represent roles in collaborations as indicated in Figure 16.8.

Figure 16.8 - Example of a use case for withdrawal and transfer of funds

package TransactionUseCases

package ATM Services

package Administration

Card
Identification

Perform ATM
Transaction

On-Line
Help«extend»

condition: {customer
selected HELP}
extension point: Selection

Withdraw Transfer Funds Deposit
Funds

«include»

«include»

Read Log Register ATM
at Bank

«subsystem»
: ATMsystem

: Customer : Bank

: Withdraw

: Transfer Funds
UML Superstructure Specification, v2.0 581

Presentation Options
A use case can also be shown using the standard rectangle notation for classifiers with an ellipse icon in the upper-right-
hand corner of the rectangle with optional separate list compartments for its features. This rendering is more suitable
when there are a large number of extension points.

Figure 16.9 - Example of the classifier based notation for a use case

Examples

See Figure 16.3 through Figure 16.9.

Rationale
The purpose of use cases is to identify the required functionality of a system.

Changes from previous UML
The relationship between a use case and its subject has been made explicit. Also, it is now possible for use cases to be
owned by classifiers in general and not just packages.

16.4 Diagrams

Description

Use Case Diagrams are a specialization of Class Diagrams such that the classifiers shown are restricted to being either
Actors or Use Cases.

Graphic Nodes

The graphic nodes that can be included in structural diagrams are shown in Table 16.1.

extension points

order created : in Created state
order processed : in Processed state
order cancelled : in Cancelled state
order rejected : in Rejected state
order completed : in Completed state
order destroyed : in Destroyed state
order delivered : in Delivered state
order obfuscated : in Obfuscated state

OrderStationery : PlaceOrder
582 UML Superstructure Specification, v2.0

Table 16.1 - Graphic nodes included in use case diagrams

Node Type Notation Reference

Actor (default) See “Actor (from UseCases)” on page 570.

Actor (optional user-
defined icon -
example)

Extend See “Extend (from UseCases)” on page 573.

Extend (with
Condition)

ExtensionPoint See “ExtensionPoint (from UseCases)” on
page 575.

Customer

Perform ATM Transaction

«extend»extension points
Selection

extended (use case) extending (use case)

«extend»

Condition: {customer selected HELP}
extension point: Selection

extension points
Selection

extension point

extension points

order created : in Created state
order shipped : in Shipped state

OrderStationery

extension point
UML Superstructure Specification, v2.0 583

Include See “Include (from UseCases)” on page 576.

UseCase See “UseCase (from UseCases)” on page 578.

Table 16.1 - Graphic nodes included in use case diagrams

Node Type Notation Reference

Withdraw Card
Identification

«include»

including use case included use case

Withdraw

On-Line Help

Perform ATM Transaction

extension points
Selection

OrderStationery
584 UML Superstructure Specification, v2.0

Examples

The use case diagram in Figure 16.10 shows a set of use cases used by four actors of a physical system that is the subject
of those use cases. The subject can be optionally represented by a rectangle as shown in this example.

Figure 16.11 illustrates a package that owns a set of use cases.

Note – A use case may be owned either by a package or by a classifier (typically the classifier specifying the subject).

Figure 16.10 - UseCase diagram with a rectangle representing the boundary of the subject

Customer

Supervisor

Salesperson

Establish Credit

Telephone Catalog

Shipping Clerk

Check Status

Place Order

Fill Orders

use case

actor

subject
UML Superstructure Specification, v2.0 585

Figure 16.11 - Use cases owned by a package

Changes from previous UML

There are no changes from UML 1.x, although some aspects of notation to model element mapping have been clarified.

package ATMtopPkg

Customer

Administrator

«subsystem»
ATMsystem

Bank

Withdraw

Transfer Funds

Deposit
Money

Register ATM
at Bank

Read Log

0..1

1

0..11

0..1

1

0..11

0..1

1

0..*

1

0..*

1

586 UML Superstructure Specification, v2.0

	16 Use Cases
	16.1 Overview
	16.2 Abstract syntax
	16.3 Class Descriptions
	16.3.1 Actor (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Presentation Options
	Style Guidelines
	Changes from previous UML

	16.3.2 Classifier (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Rationale
	Changes from previous UML

	16.3.3 Extend (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples
	Rationale
	Changes from previous UML

	16.3.4 ExtensionPoint (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Semantic Variation Points
	Notation
	Examples
	Rationale
	Changes from previous UML

	16.3.5 Include (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Semantics
	Notation
	Examples
	Rationale
	Changes from previous UML

	16.3.6 UseCase (from UseCases)
	Generalizations
	Description
	Attributes
	Associations
	Constraints
	Additional Operations
	Semantics
	Notation
	Presentation Options
	Examples
	Rationale
	Changes from previous UML

	16.4 Diagrams
	Description
	Graphic Nodes
	Examples
	Changes from previous UML

