
Zawansowane Modelowanie
i Analiza Systemów
Informatycznych

(l-9) optional

Polsko-Japońska Wyższa Szkoła Technik Komputerowych
Katedra Systemów Informacyjnych

2013

Overwiev

• Introduction to Model Driven Architecture (MDA)

• Concepts

• Overview of Current Work

• Promises and Challenges

• Conclusions

ZMA-9 2

• The entire history of software engineering is that of the
rise in levels of abstraction,

• Grady Booch Vision:

‘ Someday soon, the idea of writing an application in Java or C++ will

seem as absurd as writing an application in assembler does today.
And the code generated from an Executable UML model will be as
uninteresting and typically unexamined as the assembler pass of a
third generation language compile is today’ -

Software engineering evolution

Grady Booch (born February 27, 1955) is an American software engineer, and Chief Scientist,
Software Engineering in IBM Research. Booch is best known for developing the Unified Modeling
Language with Ivar Jacobson and James Rumbaugh.

Go to "The Promise, The Limits, The Beauty of Software”
http://video.yahoo.com/watch/577305/2839970

ZMA-9 3

Executable UML – xUML
(by Stephen J. Mellor, Marc J.Balcer)

• „Executable UML is a major innovation in the field of software development. Use
it to produce a comprehensive and understandable model of a solution
independent of the organization of the software implementation. It is a highly
abstract thinking tool that aids in the formalization of knowledge, and is also a
way of describing the concepts that make up abstract solutions to software
development problems.

• As a foundation for MDA, Executable UML provides the key technology for
expressing application domains in a platform-independent manner.

• Executable UML can do more than formalize requirements and use cases into a
rich set of verifiable diagrams. The models have a formal action semantics so that
they are executable and testable and can be translated directly into code by
executable UML model compilers”.

ZMA-9 4

Software engineering evolution

• By the late '70s the form of Structured Programming (SP) provided a collection of good
practices for writing 3GL code

• Followed by Structured Design (SD) and Structured Analysis (SA), both of which introduced
more abstract graphical representations of programs

• The impact of SA/SD/SP was enormous. Defect rates dropped from 150/KLoC to 5/KLoC
and great productivity improvements.

• There was still a problem; 60-80% of all developer effort was expended in maintaining
existing software

ZMA-9 5

Software engineering evolution

Process
Logic

Applicatio
n Logic

Data

One logical block
The result was a disaster for

maintainability

ZMA-9

6

7

Process
Logic

Applicati
on Logic

Data

Process
Logic

Applicatio
n Logic

Data

DBMS

Process
Logic

Application
Logic

Data

DBMS

WFMS

1970’s 1980’s 1990’s

Software engineering evolution

ZMA-9

DDL and DML
executable graphical languges

 Database

 DBMS

Interactive
Queries

Application
Programs

UoD

 Conceptual
Spec;

 ER, ORM, UML

Design time Execution time

DDL

V
Q

ORM SQL

Many Case Tool products use ConQuer as DDL generator

ZMA-13
ZMA-9 8

 9

Executable Process Modeling

Communication Protocol

Database Database Database

DBMS
SQLServer

DBMS
Oracle

DBMS
DB2

MDBMS File ???

WFMS

Executable Process
model, Wfs Coalition,

BPMN

ZMA-13ZMA-9

OMG

• Object Management Group (OMG) is a consortium, originally
aimed at setting standards for distributed object-oriented systems,
and is now focused on modeling (programs, systems and business
processes) and model-based standards. Founded in 1989 by eleven
companies (including Hewlett-Packard, IBM, Sun Microsystems,
Apple Computer, American Airlines and Data General), OMG tried
to create a heterogeneous distributed object standard. The goal
was a common portable and interoperable object model with
methods and data that work using all types of development
environments on all types of platforms.

• Today, over 800 companies from both the computer industry and software-using
companies are members of OMG. Since 2000 the OMG's International Headquarters are
located in Needham, Massachusetts.

ZMA-9 10

MDA as a way to go

• In 2001 the OMG adopted the Model Driven Architecture as
an approach for using models in software development -
originally to help guide UML modeling

• MDA specifically defines three high-level model types. Each
concerns a different audience, but collectively they still
comprise

 one integrated model

ZMA-9 11

Introduction

• Model Driven Architecture (MDA) is an approach that separates a
system's desired functions from its implementation on a specific
technology platform, resulting in an architecture that is not tied
to any one language, platform, or vendor.

• MDA is a platform- and vendor-neutral approach to software
architecture design and development. MDA is applicable to the
complete development life cycle of designing, deploying,
integrating, and managing applications, using open standards
such as Unified Modeling Language (UML), Extensible Markup
Language (XML), XML Metadata Interchange (XMI), and
Common Object Request Broker Architecture (CORBA).

ZMA-9 12

XMI

• XMI is to enable easy interchange of metadata between UML-
based modeling tools and MOF-based metadata repositories in
distributed heterogeneous environments. XMI is commonly
used as the medium by which models are passed from
modeling tools to software generation tools as part of model-
driven engineering.

• XMI integrates four industry standards:

1. XML - eXtensible Markup Language, a W3C standard.

2. UML an OMG modeling standard.

3. MOF - Meta Object Facility, an OMG language for specifying
metamodels.

4. MOF Mapping to XMI

ZMA-9 13

CORBA

• CORBA benefits include language- and OS-independence,
freedom from technology-linked implementations, strong
data-typing, high level of tunability, and freedom from the
details of distributed data transfers.

• CORBA uses an interface definition language (IDL) to
specify the interfaces that objects will present to the outside
world. CORBA then specifies a “mapping” from IDL to a
specific implementation language like C++ or Java.
Standard mappings exist for Ada, C, C++, Lisp, Ruby,
Smalltalk, Java, COBOL, PL/I and Python. There are also
non-standard mappings for Perl, Visual Basic, Erlang, and
Tcl implemented by object request brokers (ORBs) written
for those languages.

ZMA-9 14

Introduction (cont)

• MDA systems are modeled based on functions, rather than
language, platform, or technology, meaning that a well-
built MDA-based system can be changed or extended over
time without disrupting the core infrastructure.

• The MDA approach potentially eases integration, shortens
development time, and conserves company resources by
making it possible to develop more solutions without
needing more people or time.

ZMA-9 15

The basics of MDA

• In the MDA lexicon, a model is a description of a system
and its environment. It is often a combination of drawings
and text. A model-driven approach is one that uses a model
to direct the design, development, and maintenance of the
system. It naturally follows that a model driven architecture
is one where the architecture of the system is derived from
the model of the system.

• MDA has three viewpoints where by a viewpoint we
understand a technique for focusing individually on
particular concerns in a system.

ZMA-9 16

The basics of MDA

• The first MDA viewpoint is called the Computation
Independent Viewpoint (CIV). Its role is to separate the
fundamental logic of the system from the platform-specific
specification. The CIV focuses on the environment and
requirements of the system. In this viewpoint, the structure
and implementation of the system are hidden, or possibly not
yet implemented.

• The second viewpoint is the Platform Independent Viewpoint
(PIV). This viewpoint focuses on the operation of the system
while hiding the platform-dependent details. It may use a
general-purpose, platform-independent modeling language
such as UML.

ZMA-9 17

The basics of MDA

• The third viewpoint is called the Platform Specific Viewpoint (PSV).
This viewpoint focuses on the implementation details of a certain
platform.

• Each of the viewpoints has its own model:

• The Computation Independent Model (CIM), which shows the
business model of the system and is usually made by a business
analyst.

• The Platform Independent Model (PIM), which is a model of the
system functions, usually made by an architect.

• The Platform Specific Model (PSM), which models the
implementation, on one or more platforms, of the PIM.

• The PIM and PSM are more important to the software .

•

ZMA-9 18

Model transformations

• The real value of MDA lies in the fact that the CIM can be
translated to a PIM by a simple mapping. Likewise, the
PIM can be translated to a PSM (by a mapping), and the
PSM can be translated to code.

 The key elements are the mappings and the MDA tool or
tools that do the translation.

ZMA-9 19

Model transformations

ZMA-9 20

MDA origin

• MDA emerged in 2002, originally to help guide UML
modeling. MDA specifically defines three high-level model
types: (CIM), (PIM), (PSM).

 Each concerns a different audience, but collectively they
still comprise one integrated model.

ZMA-9 21

An overview of a simple example

• Think, for example, about a typical enterprise system that
deals with customer orders.

 The CIM of the Orders system shows what the system should
do. The CIM would likely consist of a few high-level UML
diagrams created by a business analyst. The architect would
then use the translation of the CIM as a basis for creating the
PIM.

• The PIM shows the functions and structure of the system, but
hides implementation-specific and platform-dependent
information. The PIM consists of detailed UML diagrams that
do not contain any technology-related information.

ZMA-9 22

An overview of a simple example (cont)

• The PIM is then translated, for the sake of this example, to
three different PSMs: one for the database, one for the
Enterprise JavaBean (EJB), and one for the JavaServer
Page (JSP). The JSP will handle the user interface and,
therefore, requires its own PSM (separating it from the
EJB function).

• The next steps would be for developers to add marking to
the models (prepping them for translation) and glue code
to the final output.

ZMA-9 23

Mapping and translations for the Orders example

ZMA-9 24

MDA – models stack

Meta-model MDA Architect

Meta-model

Meta-model

Translation Definition

Translation Definition

Translation Definition

CIM
Domain User

Business Analyst

Model Entry

Extensions

Analyst/Designer

PIM
Model Entry

Extensions

PSM

CodeDeveloper/Tester

Model Entry Extensions

ZMA-9 25

VIDE vision

CIM

PIM

PSM

Code

Meta-modelDomain Expert
Business Analyst

Architect/Designer
Analyst/VIDE Programmer

Developer/Tester

MDA Architect

Meta-model

Meta-model

Translation Definition

Translation Definition

Translation Definition

Model Entry

Model Entry

Model Entry

Extensions

Extensions

Extensions

Expert’s early validation

- VIDE developes Visual and Textual languages
- VIDE provides Bevahioural modelling on PIM
level
- VIDE demonstartes Automated transformations
from PIM into PSM&Code

ZMA-9 26

Roles

• The CIM, aimed at business analysts, includes only the
model elements necessary to describe business
functionality.

• The PIM, for system analysts, includes additional elements
describing the computational logic necessary to realize
CIM functionality, but without implementation details.

• The PSM is aimed at system designers; it provides
additional elements specific to given deployment platforms,
such as Java/EJB, or C#/.NET.

ZMA-9 27

Benefits of MDA

• MDA provides a nice, solid framework to let the system
architecture define the models of the system before any
implementation effort has begun.

• It also uses ready components and existing mappings to
produce similar functions regardless of the platform or
technologies used.

• Further benefits of MDA include the following:

ZMA-9 28

Benefits of MDA

• Portability

 After a PIM existance, it is easy to create a new PSM based
on that model. Naturally, we need the mapping for the
desired platform and the glue code, but the underlying
model of the system will be unchanged.

• Cross-platform interoperability

 In addition to being able to port a system model to various
implementations, one can also use a special mapping to
translate a PIM into a heterogeneous PSM, in which
components from multiple platforms comprise the system.

ZMA-9 29

Benefits of MDA

• Productivity

 MDA is a highly efficient design and development approach,
making it possible to get the same work done with fewer
people, or to do more work with the same number of people,
all without additional strain on the development team.

• Quality

 The incidence of human error is greatly reduced when the
majority of system code is generated and derived from a
single model.

ZMA-9 30

Benefits of MDA

• Rapid inclusion of new technology

 MDA's mapping approach makes it possible to implement
a given model with new and emerging technologies, or to
add newer technologies into an existing system with little
strain on the development team or the core system.

• Further benefits to this list are the benefits of platform
independence, domain specificity, reduced cost, and
reduced development time.

ZMA-9 31

MDA –models stack

Business Analysis

CIM

PIM

Mapping to each required Platform

PSM
Corba
Impl

J2EE
Impl

.Net
Impl

Web Services
Impl

Corba
Impl

J2EE
Impl

.Net
Impl

Web Services
Impl

Mapping to each implementation

ZMA-9 32

How to construct the MDA models stack?

ZMA-9 33

Customised Zachman Framework for Enterprise
Architecture

http://en.wikipedia.org/wiki/Zachman_framework

Process
(function)

Application
(service)

Information
(data)

Organisation
(resources)

Technology
(infrastructure)

Contextual
Vision/Goal
(CIM)

Conceptual
(CIM)

Logical
(PIM)

Physical
(PSM)

 Modelling Domains 

P
e
r
s
p
e
c
t
i
v
e

ZMA-9 34

Models
• Each entry in the Zachman EA matrix has its own;

– content,
– meta-model (more specifically - the full 4 layered meta-model stack;

MOF model, UML meta model, UML models, User objects),
– reference model and
– enterprise model.

• The relationship between the individual models on the corresponding
levels must be well designed, specified and maintained.

• Formally, with this only limited view on ZF, we have already 4x5x4
(perspectives, domains, 4 layered meta models) 80 models. Some are
meta-models others objects models.

ZMA-9 35

Comments

• At M2 level all 20 models may have two forms;

 1) abstract syntax ,

 2) specific - concrete syntax adopted by a vendor providing such
modelling environment tool support.

• The M2 models are tightly connected.

• Similar relationship is at other M levels.

ZMA-9 36

MDA – a perspective

ZMA-9 37

MDA and UML Roots

• Originally, UML focused on modeling the structural
components of single application. But over time, OMG
progressively extended UML to cover a wider range of
content, including business domain models, use cases, activity
flows, logical constraints, state machines, deployment
packaging and service architectures.

ZMA-9 38

MDA and MOF

• Going down the MDA’s CIM-PIM-PSM route, it soon
becomes clear that just extending UML is not enough.

• There are many other pre-existing, non-OMG notations
for modeling data structures, message protocols, business
processes, and so on that UML is unlikely to replace.

• OMG decided to integrate all these into MDA by cleverly
adapting its pre-existing repository standard, the Meta
Object Facility (MOF).

ZMA-9 39

MDA and SOA

• Services Oriented Architecture (SOA) is an emerging architectural
approach that seeks to develop and deploy business applications as a
set of reusable, composable services.

• These basic concepts are not unique to SOA; some pre-existing
OMG specifications address this space, including; 1) the CORBA
Component Model (CCM) and

 2) the Enterprise Distributed Object Computing (EDOC)
standards. (EDOC is proposed as the modeling framework for
Internet computing, integrating web services, messaging, ebXML,
.NET and other technologies under a common technology-
independent model. Please see EDOC Vision and Summary,
extracted from the specification.

ZMA-9 40

MDA and SOA

• SOA per se emerged from the web services specifications
of the Worldwide Web Consortium (W3C).

• W3C originally envisioned loosely coupled inter-enterprise
B2B service components available over the Internet,
exchanging information through XML documents. Such
services are described in a Web Services Definition
Language (WSDL) and located via a Universal
Description, Discovery and Integration (UDDI) directory.

ZMA-9 41

MDA and SOA

• SOA takes web services deeper into the enterprise,
attempting to restructure a company’s entire applications
portfolio into a set of SOA-based service components.

• Components can then hopefully be orchestrated into new
applications at will, speeding and simplifying the solutions
delivery process. For the Internet-based developments,
SOA sounds like a very intuitive extension of familiar
concepts.

ZMA-9 42

MDA and SOA

• SOA is relatively easy to describe, it is much more
challenging to implement. The process of breaking down a
large enterprise’s business functionality and existing systems
into independently deployable service components is difficult.

• Moreover, that process uncovers exactly the same decades-
old problems that inspired the development of UML, BPMN,
MOF and, ultimately, MDA.

• MDA, SOA is technically just another architectural approach
to support software development.

• Carefully blending SOA with MDA could accelerate the
successful adoption of both, and finally make clear that “real
MDA” is much more than just UML-based code-generation.

ZMA-9 43

MDA Process in general– Challenges (1)

• How to assess new requirements and change requests:

 – how do they affect the code, the PSM, or the PIM, or
CIM?

 – how to locate the model/code/transformation rule that is

 affected by a change request,

 - connection between CIM and PIM is tenuous at best, so

 the path from requirements to design is still muddy

• In general, writing transformation rules is very difficult:

architects should/must understand what transformation the
 tool performs,

ZMA-13ZMA-9

MDA Process in general– Challenges (2)

• Transformation language not a standard yet – experiments
such as project VIDE (PJWSTK a partner in an EU project)
and empirical evaluations are challenging,

• Architects are not used to creating PIM-level design that is
complete and consistent – how to proceed with those phases to
get high quality outcomes? how to validate and verify design?

• How to introduce quality attributes into different layers and
the required transformations,

• Reverse engineering required to make full sense from the MDA
concept

ZMA-9 45

Conclusions

• The main purpose of the MDA approach is to shorten
development time and cost by easing the programming
burden.

• In MDA, most source code is generated from the PSMs
and generated by the transform tool.

• MDA can be an efficient development tool for cross-
platform development in enterprise systems.

• Much more research work, experimentation and
experience from practical use attempts are required to
fully develop/assess the MDA idea.

ZMA-9 46

Readings

• Alan Brown's three-part "Introduction to Model Driven
Architecture" (developerWorks, February 2004 through
May 2005) explains the importance of the modeling
approach and introduces four key principles of MDA, as
well as discussing related tools and standards.

• The Rational Edge has published the entire first chapter of
MDA Distilled: Principles of Model-Driven Architecture
(Addison-Wesley, 2004), an excellent resource for
architects interested in learning more about MDA.

ZMA-9 47

• In "The role of the service-oriented architect" (The
Rational Edge, May 2003) Jason Bloomberg contrasts
model-driven and service-oriented architectures and shows
you how to apply the 4+1 view model in the design of a
service-oriented architecture.

• Visit IBM's SOA and Web Services technical library to
learn more about service-oriented architectures.

• The Object Management Group hosts an MDA homepage
where you can read MDA success stories and learn about
MDA tools and products.

ZMA-9 48

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48

