
1Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

IT Systems Implementation –
UML Class diagrams II,

and implementing classes and their
structural relations in Java

Bettina Berendt

Humboldt-Universität zu Berlin, Institut für Wirtschaftsinformatik
http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

(Based on Barker, Chs. 10 and 14, and Together 6.0.1)

Last update: 15 November 2002

162

2Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Agenda

Additional refinements of UML class diagrams

UML Java conversion

The Together software

xxx

163

3Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Abstract classes

� No-one is „just a person“. Everyone is either a student, or a
professor, or ...

� An abstract class is one that cannot be instantiated.
� It only serves to define all attributes and behaviours that all

subclasses (or their instances) have in common.

Class name
in italics!

164

4Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Person

Fem
ale

Player

M
al
e

GENERALIZATION — COVERAGE

overlapping - a superclass object can be a member of more than one
subclass

disjoint - a superclass object is a member of at most one subclass

Tennis Soccer

Player

{overlapping}

Male Female

Person

{disjoint}

Te
nn
is

Soccer
(from http://course.cs.ust.hk/comp211/2002Spring/ Slides/02OOModeling.ppt) 165

5Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

University
StudentPostgrad

Tree

GENERALIZATION — COVERAGE (cont’d)

incomplete - some superclass object is not a member of any subclass

complete - all superclass objects are also members of some subclass

Oak BirchElm

Tree

{incomplete}

PostgradUndergrad

University
Student

{complete}

U
nd
er
gr
ad

Oak

Elm

Birch

(from http://course.cs.ust.hk/comp211/2002Spring/ Slides/02OOModeling.ppt) 166

6Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Player

GENERALIZATION — COVERAGE (cont’d)

Tennis Soccer

Player

{overlapping, incomplete}

UG PG

Course

{overlapping, complete}

overlapping, incomplete

overlapping, complete

Te
nn
is

Soccer

Course

U
G

PG
(from http://course.cs.ust.hk/comp211/2002Spring/ Slides/02OOModeling.ppt) 167

7Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

University
StudentPostgrad

GENERALIZATION — COVERAGE (cont’d)

Oak BirchElm

Tree

{disjoint, incomplete}

PostgradUndergrad

University
Student

{disjoint, complete}

disjoint, complete

disjoint, incomplete

U
nd
er
gr
ad

TreeOak

Elm

Birch

(from http://course.cs.ust.hk/comp211/2002Spring/ Slides/02OOModeling.ppt) 168

8Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Multiple inheritance

Not supported in Java!

169

9Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Roles in a structural relation

170

10Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Agenda

Additional refinements of UML class diagrams

UML Java conversion

The Together software

xxx

171

11Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

A program with just one solution space class (the one
holding the main method)

The simplest Java program

� 1 file:
MyFirstDemoProgram.ja
va

� which contains 1 class:
MyFirstDemoProgram

� which contains 1
method: main

� which contains 1
command: print „Hello
World“ to the screen

The program‘s class
structure as a UML
class diagram

172

12Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

A program with one solution space class and one
domain space class

Main purpose
of this program:

� Show simple methods for a user-defined class (Student
with attribute name, which can be set or retrieved)

� Show simple interaction between two classes
� Show differences in the Java treatment between

� Simple datatypes (integer numbers int as an example; these
are not classes in Java)

� The datatype String, which is a standard SDK class (i.e.,
some simplifications are provided for handling this datatype)

� A typical user-defined datatype (a class)

173

13Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Demo program #2: Java source code of Student

public class Student {

private String name; // the attribute

public void giveNameToStudent(String n) {

name = n;

}

public String findNameForStudent() {

return name;

}

public Student() { // a constructor

// ...

}

}

Other classes can‘t access the attribute name directly ...

... they have to use the publicly available functions for this.

Every class
can request
the
construction
of a student
object

174

14Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Demo program #2: Java source code of the “driver”
class (1)

public class MySecondDemoProgram {

public static void main (String[] args) {

System.out.println("First message");

int i;

i = 4;

System.out.println("The variable i is first: " + i);

i = i + 3;

System.out.println("The variable i is now: " + i);

String x;

x = "One word";

System.out.println("The variable x is first: " + x);

x = x + " another word";

System.out.println("The variable x is now: " + x);

175

15Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Demo program #2: Java source code of the “driver”
class (2)

String x;

x = "One word";

System.out.println("The variable x is first: " + x);

x = x + " another word";

System.out.println("The variable x is now: " + x);

Student s = new Student();

s.giveNameToStudent("Alberta");

String nn = new String();

nn = s.findNameForStudent();

System.out.println("The student is called " + nn);

}

}

(repeated from previous slide)

176

16Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Demo program #2: output

First message

The variable i is first: 4

The variable i is now: 7

The variable x is first: One word

The variable x is now: One word another word

The student is called Alberta

177

17Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Compiling and running a Java application: From the
command line

� From the command line (MS DOS window or Unix shell):
compile the program
% javac MyProgram.java

This generates the file MyProgram.class. Then run it:
% java MyProgram [optional command line arguments]

178

18Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML Java: Classes with attributes and operations
(called “methods” in Java)

public class Student {

private String major;

private String degree;

public void addSection(Section s) {

}

public void dropSection(Section s) {

}

public boolean isEnrolledIn(Section s) {

}

} Attributes can be put
before or after methods;
most programmers put them first.

179

19Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML Java: Inheritance

public class Student extends Person {

// ...

}

public class Professor extends Person {

// ...

}

180

20Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML Java: Structural relations – one-to-one

� Associations, aggregations, and compositions
must be implemented as attributes in a Java class.

� An attribute is needed whenever an object of one
class needs to access its „partner“ object of
the other class.

Example: the maintains association

� If Student objects need to access their
corresponding Transcript objects, add
private Transcript transcript;

to the Student class

� If Transcript objects need to access their corresponding
Student objects, add
private Student studentOwner; to the Transcript class

181

21Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML Java: Structural relations – x-to-many (1)

� But what if the relation is one-to-many or many-to-many?

� Example: the attends association between Student and
Section

� Solution: use a collection type, e.g.
� a Vector

� a Hashtable

� (both in the package java.util)

182

22Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML Java: Structural relations – x-to-many (2)

� If Student objects need to access their
corresponding Section objects, we can add
private Vector attends; to the Student class

� If Section objects need to access their corresponding
Student objects, we can add this to the Section class:
private Hashtable enrolledStudents;

183

23Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML Java: Association classes and n-ary
associations

� Java cannot represent association classes or n-ary
associations directly

� So while they help to create a better and less cluttered UML
diagram, they have to be broken up into binary associations
for translation into Java!

� An example is the class TranscriptEntry, which turns from
an association class of the association attends to a class
which has one association with the Student class and one
with the Section class.

184

24Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Agenda

Additional refinements of UML class diagrams

UML Java conversion

The Together software

xxx

185

25Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Overview (for more detail, see
http://www.togethersoft.com)

� All UML diagrams can be drawn with any drawing program
� The correspondence UML diagram element – Java code

element is not always unique and must be learned anyway.
� Still, tools can be helpful in supporting software and

program design.
� Together is a tool that supports the design of UML diagrams
� It generates Java code from class diagrams and vice versa
� Like every tool, it has advantages and disadvantages
� The major disadvantages are

� Handling is not 100% trivial
� Some specifics are not 100% UML as found in textbooks (e.g.,

it differs from the UML used in the books used for this lecture)
� Tool behaviour requires some reflection to be understood

186

26Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

A screenshot of the Together software in action

187

27Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML and Java in Together: a program with just one
solution space class (the one holding the main method)

The simplest Java program

� 1 file:
MyFirstDemoProgram.ja
va

� which contains 1 class:
MyFirstDemoProgram

� which contains 1
method: main

� which contains 1
command: print „Hello
World“ to the screen

The same as a UML
class diagram

// Commented out:
Print out the first
command line argument

All
detail
shown

Details
hidden

188

28Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML and Java in Together: a program with one solution
space class and one domain space class

189

29Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Compiling and running a Java application: From within
Together

� F9 (or “Run”) compiles and runs the program.

190

30Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Demo program #2: output on the Together “command
line”

C:\jdk1.3.1_01\bin\javaw -classpath
C:\TogetherSoft\Together6.0.1\out\classes\MySecondD
emoProgram;C:\TogetherSoft\Together6.0.1\lib\javax.
jar; MySecondDemoProgram

First message

The variable i is first: 4

The variable i is now: 7

The variable x is first: One word

The variable x is now: One word another word

The student is called Alberta

The JDK is the one that is
„really“ running the Java program... (not shown): compilation ...

191

31Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

The UML class diagram of a Student Registration
System (with attributes and operations)

(adapted from Barker, p. 377) 192

32Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

The Together UML class diagram A: the one that
corresponds most closely to the original SRS diagram

193

33Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

The Together UML class diagram B: The one that splits
up an association class into two binary associations

194

34Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML Java: Relation conversion by Together – some
things are done automatically …

� Together distinguishes between a relation‘s client and
supplier classes.

� This holds for associations, aggregations, and compositions.

� In the client Java class, it automatically generates an
attribute for the relation:
public class Student { // ...

/**

* @label maintains

* @clientCardinality 1

* @supplierCardinality 1

*/

private Transcript lnkTranscript;}

� The programmer can rename this attribute with a more
useful name like transcript.

195

35Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML Java: Relation conversion by Together – … but
this may not be enough

Each of these 2
associations needs
at least an attribute
in TranscriptEntry.

If TranscriptEntry
is the client class
of the association
in Together, the
following two
attributes are gener-
ated automatically:

private Student lnkStudent;
private Section lnkSection;

But: We may also need access
(attributes) in the reverse direction!196

36Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

UML Java: Relation conversion by Together – take
care with x-to-many relations!

� To generate this direction of the part-whole relation, the
Transcript class (the whole) must be the aggregation‘s client

� Together then produces:
public class Transcript {

// ...

private TranscriptEntry lnkTranscriptEntry; }

� This needs to be corrected by hand in two respects:
� The type of this attribute must be a collection!

� A link from the TranscriptEntry may need to be added

197

37Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Using the data dictionary in Together

198

38Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Specifics of Together

� Operations are shown without parentheses and without their
signature

� „+“ indicates a public attribute/operation, „-“ a private one

� Association classes are only partially supported.

� Constructor(s) are shown like other operations.

� Structural relations have a „supplier“ and a „client“ class.

� Whenever there is a „get“ and/or a „set“ method associated
with an attribute, Together treats this attribute as a
„property“, and the operation(s) are not shown in the class
diagram.

199

39Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

The Together UML class diagram C: the one that
corresponds to the SRS Java source code

200

40Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

The Together UML class diagram C: One-to-many
associations are shown as (1 or) 2 attributes & 1 arrow

201

41Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

The Together UML class diagram C: One-to-one
associations are shown as (1 or) 2 attributes & 2 arrows

202

42Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

The Together UML class diagram C: Many-to-many
associations are shown as 2 attributes & no arrows

Another peculiarity of Together:
• attends is an attribute: a Vector that holds the attended Sections
• getenrolledSections is a method that returns these Sections
• because of the name of this method, Together treats „enrolledSections“
xas a property in the UML class diagram, and does not show the method

203

43Berendt: IT Systems Implementation, winter term 2002/03, http://www.wiwi.hu-berlin.de/~berendt/lehre/2002w/isi/

Effect of renaming link variables generated by Together
in the implementation of an associations’ client class

Section was the client class of the
association offered as.

Its implementation obtained a variable
Course lnkCourse.
This was renamed representedCourse.
The association label remains in the diagram!
Similarly, Student was the client class of the
association maintains. The variable
Transcript lnkTranscript was renamed
transcript.
All other generated link variables were
replaced by collection-type variables (e.g., in
Student: Section lnkSection Vector
attends). These disappear from the diagram204

