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Kirchhoff’s Current Law KCL (Kirchhoff ’s first law)

At any point in an electrical circuit the sum of currents flowing towards

that point is equal to the sum of currents flowing away from that point.

Figure 1: The current entering any junction is equal to the current leaving that

junction. i1(t) + i4(t) = i2(t) + i3(t)
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Kirchhoff ’s Current Lawcan be stated alternatively as:

“the algebraic sum of the branch currents entering (or leaving) any node

of a circuit at any instant of time must be zero.”

In this form, the label of any current whose orientation is away from the

node is preceded by a minus sign. The currents entering node must satisfy

i2(t) + i3(t) − i1(t) − i4(t) = 0

In general, the currents entering or leaving each node of a circuit must

satisfy. Sign “+” says that current flows into the node and “-”flows out.

∑

k

ik(t) = 0 (1)
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Kirchhoff’s Voltage Law KVL (Kirchhoff ’s second law)

The directed sum of the electrical potential differences around a closed

circuit must be zero.

Figure 2:The sum of all the voltages around the loop is equal to zero.

e1(t) − v1(t) − e2(t) + v2(t) − e3(t) + v3(t) − v4(t) = 0
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Kirchhoff’s Voltage Law

KVL can be expressed mathematically as “the algebraic sum ofthe

voltages drops around any closed path of a circuit at any instant of time is

zero.” This statement can also be cast as an equation:

∑

k

Vk(t) = 0 (2)
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Ohm’s law

The resistance of a resistor can be defined in terms of the voltage drop

across the resistor and current through the resistor related by Ohm’s law

R =
U

I
(3)

whereR is the resistance[Ω], U is the voltage across the resistor[V ], and

I is the current through the resistor[A]. Whenever a current is passed

through a resistor, a voltage is dropped across the ends of the resistor.
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• A circuit has a topological (or graph) view (consisting of a labeled set of

nodes and a labeled set of edges.)

• Each edge is associated with a pair of nodes (a node is drawn asa dot and

represents a connection between two or more physical components)

• An edge is drawn as a line and represents a path, or branch, forcurrent flow

through a component

• Each current has a designated direction, usually denoted byan arrow symbol.
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Given a branch, the pair of nodes to which the branch is attached defines

the convention for measuring voltages in the circuit. Giventhe ordered

pair of nodes(a, b), a voltage measurement is formed as follows:

vab = va–vb (4)

whereva andvb are the absolute electrical potentials (voltages) at the

respective nodes, taken relative to some reference node. The measured

quantity,vab , is called thevoltage dropfrom nodea to nodeb. We note

that

vab = –vba and thatvba = vb–va

is called the voltage rise froma to b. Each node voltage implicitly defines

the voltage drop between the respective node and the ground node.
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Node Analysis

In a node analysis, the node voltages are the variables in a circuit, and

KCL is the vehicle used to determine them. One node in the network is

selected as areference node, and then all other node voltages are defined

with respect to that particular node. This reference node istypically

referred to as ground using the symbol (⊥), indicating that it is at

ground-zero potential.

Therefore, as a general rule:

If the node voltages (potentials) are known, all branch currents in the
network can be immediately determined.
In order to determine the node voltages in a network, we applyKCL to

every node in the network except the reference node. Therefore, given an

N -node circuit, we employN–1 linearly independent equations.
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Node Analysis - Example

For 4 nodes we write 4 -1 equations:




I1 + 4 + I2 = 0

–4 + I3 + I4 = 0

–I1–I4–2 = 0

(5)

Using Ohm’s law these equations can be expressed as




V1−V3

2
+ 4 + V1

2
= 0

–4 + V2

1
+ V2−V3

1
= 0

– V1−V3

2
– V2−V3

1
–2 = 0

(6)

and solved as follow:
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Node potentials: 



V1 = −
8

3

V2 = 10

3

V3 = 8

3

(7)

and currents: 



I1 = V1−V3

2
= −

8

3

I2 = V1

2
= −

8

6

I3 = V2

1
= 10

3

I4 = V2−V3

1
= 2

3

(8)

If current is negative (I1 andI2) the direction of current flow must be changed.



ELK - Basics of electronics - Lecture 5 asz 12

Mesh Analysis - algorithm

1. mark with vectors all currents and voltages

2. For each mesh write KVL

3. for n − 1 nodes write KCL

4. solve equations
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Mesh Analysis - an example

For 3 nodes we can write equations:

I1 = I2 + I3

I2 = I4 + I5

I6 = I3 + I4

(9)

For each mesh (3 meshes) we write equation:

12 − 1 · I2 − 2 · I5 = 0

2 · I5 + 6 − 2 · I6 = 0

1 · I2 − 1 · I3 − 6 = 0

(10)
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Finally we have 6 equations with 6 variable:




I1 = I2 + I3

I2 = I4 + I5

I6 = I3 + I4

12 − 1 · I2 − 2 · I5 = 0

2 · I5 + 6 − 2 · I6 = 0

1 · I2 − 1 · I3 − 6 = 0

(11)

with solution 



I1 = 8

I2 = 7

I3 = 1

I4 = 4.5

I5 = 2.5

I6 = 5.5

(12)
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One-Port

Many times we want to model the behavior of an electric networkat only
two terminals as shown in Figure. Here, onlyV1 andI1, not voltages and
currents internal to the circuit, need to be described. We define the pair of
terminals shown as a port, where the current,I1, entering one terminal
equals the current leaving the other terminal.

We can mathematically model the network at the port as

V1 = Z · I1
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Two-Port Networks

We can model such circuits as two-port networks as shown in Figure.

Here we see the input port, represented byV1 andI1, and the output port,

represented byV2 andI2. Currents are assumed positive if they flow as

shown in Figure.
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Mathematical Modeling of Two-Port Networks
via z Parameters (Impedance Parameters)





V1 = z11I1 + z12I2

V2 = z21I1 + z22I2

(13)

or as matrix equation


 V1

V2


 =


 z11 z12

z21 z22


 ·


 I1

I2


 (14)
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Other two-port descriptions

• Admittance Parameters




I1 = y11V1 + y12V2

I2 = y21V1 + y22V2

(15)

• Hybrid Parameters





V1 = h11I1 + h12V2

I2 = h21I1 + h22V2

(16)

• others ...
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Thevenin’s and Norton’s equivalents

Figure 3:
(a) Two one-port networks

(b) the Th́evenin equivalent for network a

(c) the Norton equivalent for network a.
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Thevenin’s Theorems

The statement of the Thevenin theorem is based on Fig. 3(b)

Insofar as a load which has no magnetic or controlled source coupling to a

one-port is concerned, a network containing linear elements and both

independent and controlled sources may be replaced by an ideal voltage

source of strength,̂VT and an equivalent impedanceZT , in series with

the source. The value of̂VT is the open-circuit voltage,̂VOC , appearing

across the terminals of the network andZT is the driving point impedance

at the terminals of the network, obtained with all independent sources set

equal to zero.
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Norton’s Theorems

The statement of the Norton theorem is based on Fig. 3(c)

Insofar as a load which has no magnetic or controlled source coupling to a

one-port is concerned, the network containing linear elements and both

independent and controlled sources may be replaced by an ideal current

source of strength,̂IN , and an equivalent impedance,ZN , in parallel with

the source. The value of̂IN is the short-circuit current,̂ISC , which results

when the terminals of the network are shorted andZN is the driving point

impedance at the terminals when all independent sources areset equal to

zero.
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The Equivalent Impedance, ZT = ZN

The first method involves the direct calculation ofZT = ZN by looking

into the terminals of the network after all independent sources have been

nulled. Independent sources are nulled in a network by

replacing all independent voltage sources with a short circuit

and all independent current sources with an open circuit.
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Linearity and superposition

If cause and effect are linearly related, the total effect due to several

causes acting simultaneously is equal to the sum of the individual effects

due to each of the causes acting one at a time.
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Linearity and superposition

Î = ÎC + ÎV

Figure 4:
(a) A network to be solved by using superposition

(b) the network with the current source nulled

(current source is replaced with open circuit)

(c) the network with the voltage source nulled.

(voltage source is replaced with short circuit)
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Tellegen’s Theorem

In an arbitrarily lumped network subject to KVL and KCL constraints,

with reference directions of the branch currents and branchvoltages

associated with the KVL and KCL constraints, the product of all branch

currents and branch voltages must equal zero.

Tellegen’s theorem may be summarized by the equation

b∑

k=1

vk · jk = 0 (17)

where the lower case lettersv andj represent instantaneous values of the

branch voltages and branch currents, respectively, and where b is the total

number of branches.
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Maximum Power Transfer

Zin = Zout


