System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
3064 Pietrzak Punkty: 18
  Test     Egzamin kończączy kurs z MAD 2003     2003-06-09  
  1     Niech A = {a, b, c}. Czy następujące stwierdzenia są prawdziwe?   
  {a, c} \in A
  (a, b) \in A \times A
  {a, c} \subseteq A \times A
  2     Czy dla dowolnych zbiorów A, B i C:   
  (A \setminus B) \cup B = A
  A\setminus (B\cap C)=(A\setminus B)\cup(B\setminus C)
  A\cap(B\setminus C)=(A\cap B)
  3     Czy dla dowolnych zbiorów A, B i C:   
  (-A) \cup (-B) = -(A \cap B)
  (A \setminus B) \subseteq (A \cap B)
  (A\cap B)\cap(A\setminus B)=\emptyset
  4     Jaka jest wartość wyrażenia (B \oplus A) \oplus A dla dowolnych zbiorów A, B:   
  A
  B
  \emptyset
  5     Niech z będzie zdaniem: \forall _{x \in R}   \forall _{y \in R} [(x < y) \rightarrow  (x^{2} < y^{2})]. Czy zaprzeczeniem z jest   
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} > y^{2})]
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} < y^{2})]
  \exists _{x \in R}   \exists _{y \in R }[(x    \ge    y)   \land (x^{2}   \le    y^{2})]
  6     Czy następujące wyrażenia są tautologiami rachunku zdań?   
  p \rightarrow  (p  \lor q)
  q \rightarrow (p  \rightarrow p)
  p \rightarrow  (p  \land q)
  7     Które z następujących wyrażeń są tautologiami rachunku predykatów:   
  ((\exists x)a(x)) \leftrightarrow ((\forall x)a(x))
  ((\exists x)(a(x) \land b(x))) \leftrightarrow ((\exists x)(a(x) \lor b(x)))
  ((\forall x)(a(x) \lor b(x))) \leftrightarrow ((\forall x)(a(x) \land b(x)))
  8     Które funkcje są jednocześnie "1-1" i "na":   
  f: R \rightarrow R, f(x) = (x2+1)1/2
  f: R \rightarrow R, f(x) = x2003
  f: R \rightarrow R, f(x) = x4
  9     Czy następujące stwierdzenia są prawdziwe   
  Każda funkcja różnowartościowa f: N \rightarrow N jest funkcją "na"
  Każda funkcja różnowartościowa f: {1,2,3,4,5} \rightarrow {1,2,3,4,5} jest funkcją "na"
  Każda funkcja przekształcająca zbiór {1,2,3,4,5} na zbiór {1,2,3,4,5} jest funkcją różnowartościową
  10     Ustal prawdziwość następujących zdań:   
  Jeśli r1 i r2 są relacjami zwrotnymi, to jest nią również relacja r_1 \cap r_2
  Jeśli relacja r jest przechodnia to r \cdot r \subseteq r
  Jeśli relacja r jest zwrotna i przeciwzwrotna to r jest relacją pustą
  11     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację równoważności r: X r Y wttw., gdy X \cup {1,2} = Y \cup {1,2}. Czy następujące stwierdzenia są prawdziwe?   
  Klasa abstrakcji [\emptyset ]_{r} zawiera 4 elementy
  Klasa abstrakcji [A]_{r} zawiera 5 elementów
  Klasa abstrakcji [{3}]_{r} zawiera 2 elementy
  12     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację r : X r Y wttw., gdy X \cap Y = {1,2,3}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją zwrotną
  r jest relacją antysymetryczną
  r jest relacją przechodnią
  13     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację r : X r Y wttw., gdy X \cap Y = {1,2,4}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  14     Liczba wszystkich funkcji f: {1,2,3,4,5} \rightarrow {0, 1} jest równa   
  5^{2 }
  2^{5 }
  2^{5 }- 2
  15     Zbadamy ciągi bitów zerojedynkowych o długości 10. Czy następujące stwierdzenia są prawdziwe?   
  Ciągów zawierających tyle samo jedynek co zer jest 2^{5 }
  Ciągów niemalejących jest 11
  Ciągów zaczynających się od bitów 10011 jest 2^{5 }
  16     Załóżmy, że mamy dziesięć książek, wśród nich pięć powieści, trzy matematyczne, dwie historyczne. Uznając za równoważne książki danego typu,dziesięć książek w jednym rzędzie można ułożyć na tyle sposobów   
  {{10!}\over{5!3!2!}}
  C_{10}^5 .C_5^3 .C_2^2
  10!
  17     Załóżmy, ze mamy dziesięć książek, wśród nich cztery powieści, trzy matematyczne i trzy historyczne. Liczba sposobów ułożenia dziesięciu książek w jednym rzędzie tak, że powieści są na początku, następnie książki matematyczne a na końcu książki historyczne jest równa   
  C_{10}^4 + C_6^3 + C_3^3
  3!.3!.4!
  4! + 2.3!
  18     Losowo ustawiano 4 litery a, b, c, d w ciągu.   
  Prawdopodobieństwo tego, że a i b stoją obok siebie, wynosi 1/3
  Prawdopodobieństwo tego, że a i b są rozdzielone jedną literą, wynosi 1/3
  Prawdopodobieństwo tego, że a i b są rozdzielone dwiema literami, wynosi 1/4
  19     Cyfry 0, 1, 2,....9 losowo ustawiano w ciąg.   
  Prawdopodobieństwo tego, że otrzymany ciąg jest ciągiem rosnącym, wynosi 1/10
  Prawdopodobieństwo tego, że 0 stoi bezpośrednio przed 1, wynosi {9}\over{10!}
  Prawdopodobieństwo tego, że 0, 1, 2 stoją obok siebie, jest większe niż {1}\over{10!}
  20     Niech X = {1,2,3}, Y = {4,5}.   
  Liczba funkcji ze zbioru X w zbiór Y wynosi 8
  Liczba funkcji różnowartościowych ze zbioru Y w zbioru X wynosi 6
  Liczba permutacji zbioru X \cap Y wynosi 5

Powrót