System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
2154 Bąkowska Punkty: 10
  Test     Egzamin kończączy kurs z MAD 2003     2003-06-09  
  1     Niech A = {a, b, c}. Czy następujące stwierdzenia są prawdziwe?   
  \emptyset \subseteq P(A)
  \emptyset \in P(A)
  \emptyset \in A
  2     Ile elementów ma zbiór P(A), jeżeli A={1, {1}, \emptyset}:   
  4
  8
  Tyle ile ma zbiór P({1,2,3})
  3     Czy dla dowolnych zbiorów A, B i C:   
  (-A) \cup (-B) = -(A \cap B)
  (A \setminus B) \subseteq (A \cap B)
  (A\cap B)\cap(A\setminus B)=\emptyset
  4     Niech z będzie zdaniem: \forall _{x \in R}   \exists _{y \in R} [(x^{2}   \ge    y^{2})    \rightarrow  (x    \ge    y)]. Czy zaprzeczeniem z jest   
  \exists _{x \in R}   \forall _{y \in R} [(x^{2}    \ge    y^{2}) \land  (x < y)]
  \exists _{x \in R}   \forall _{y \in R} [(x^{2}    \ge    y^{2}) \land  (x    \le    y)]
  \exists _{x \in R}   \forall _{y \in R }[(x^{2} < y^{2})    \rightarrow (x < y)]
  5     Które z następujących wyrażeń są tautologiami rachunku predykatów:   
  ((\exists x)a(x)) \leftrightarrow ((\forall x)a(x))
  ((\exists x)(a(x) \land b(x))) \leftrightarrow ((\exists x)(a(x) \lor b(x)))
  ((\forall x)(a(x) \lor b(x))) \leftrightarrow ((\forall x)(a(x) \land b(x)))
  6     Dana jest formuła F = (\exists x)(\forall y)(\exists z)[z>y \leftrightarrow z=x+1]. Które z następujących formuł są zaprzeczeniem formuły F:   
  (\forall x)(\exists y)(\forall z)[z>y \land z=x+1]
  (\forall x)(\exists y)(\forall z)[z>y \land z \neq x+1]
  (\exists x)(\forall y)(\exists z)[z=x+1 \leftrightarrow z>y]
  7     Które funkcje są jednocześnie "1-1" i "na":   
  f: R \rightarrow R, f(x) = (x2+1)1/2
  f: R \rightarrow R, f(x) = x2003
  f: R \rightarrow R, f(x) = x4
  8     Ustal prawdziwość następujących zdań:   
  Relacja r = {(x,y) \in N \times N: x2 mod 3 = y2 mod 3} ma 3 klasy abstrakcji
  Suma wszystkich klas abstrakcji danej relacji równoważności w zbiorze X jest równa X
  Przecięcie wszystkich klas abstrakcji danej relacji równoważności w zbiorze X jest zbiorem pustym
  9     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy na S relację r następująco: X r Y wttw.,gdy X \cap {1,2,5} = Y \cap {1,2,5}. Czy wynika z tego, że   
  r jest relacją zwrotną
  r jest relacją antysymetryczną
  r jest relacją przechodnią
  10     Niech A = {1,2,3,4,5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację równoważności r: X r Y wttw., gdy X\cap\{2,4,5\} = Y \cap \{2,4,5\}Czy następujące stwierdzenia są prawdziwe?   
  Klasa abstrakcji [\emptyset ]_{r} zawiera 1 element
  Klasa abstrakcji [A]_{r} zawiera 4 elementy
  Klasa abstrakcji [{1,2}] zawiera 2 elementy
  11     Niech A= {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy na S relację r następująco: X r Y wttw., gdy X \cup  \{1\} = Y \cup \{1\}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją zwrotną
  r jest relacją antysymetryczną
  r jest relacją przechodnią
  12     Niech A = {0,1,2,3,4,5}. Relacja r \subseteq A\times A jest określona następująco: x r y wttw, gdy xy\ mod\ 5 = 1. Czy następujące zdania są prawdziwe?   
  r jest zwrotna
  r jest symetryczna
  r jest spójna
  13     Liczba liczb naturalnych nie przekraczających 100, które są podzielne przez 4 lub 6 jest równa   
  41
  33
  37
  14     Liczba wszystkich funkcji f: {1,2,3,4,5} \rightarrow {0, 1} jest równa   
  5^{2 }
  2^{5 }
  2^{5 }- 2
  15     Załóżmy, że mamy dziesięć książek, wśród nich pięć powieści, trzy matematyczne i dwie historyczne. Wybieramy siedem książek, wśród nich trzy powieści, dwie matematyczne i dwie historyczne. Liczba sposobów wybierania jest równa   
  C_5^3 + C_3^2 + C_2^2
  3! + 2! + 2!
  C_5^3 .C_3^2 .C_2^2
  16     Losowo ustawiano 4 litery a, b, c, d w ciągu.   
  Prawdopodobieństwo tego, że a i b stoją obok siebie, wynosi 1/3
  Prawdopodobieństwo tego, że a i b są rozdzielone jedną literą, wynosi 1/3
  Prawdopodobieństwo tego, że a i b są rozdzielone dwiema literami, wynosi 1/4
  17     W urnie są 2 białe kule, 3 czerwone i 2 niebieskie. Losowo wybrano 2 kule   
  Prawdopodobieństwo tego, że kule są jednakowego koloru, jest mniejsze niż 1/500
  Prawdopodobieństwo tego, że kule są różnego koloru, jest większe niż 1/150
  Prawdopodobieństwo tego, że wśród wylosowanych nie ma białych, jest mniejsze niż 1/200
  18     Rzucono symetryczną monetą.   
  Prawdopodobieństwo tego, że orzeł wypada za pierwszym razem, wynosi 1/3
  Prawdopodobieństwo tego, że orzeł wypada co najmniej po trzech rzutach,wynosi 1/4
  Prawdopodobieństwo tego, że orzeł wypada w pierwszym i w trzecim rzucie,wynosi 1/8
  19     Niech X = {1,2,3}, Y = {4,5}.   
  Liczba funkcji ze zbioru X w zbiór Y wynosi 8
  Liczba funkcji różnowartościowych ze zbioru Y w zbioru X wynosi 6
  Liczba permutacji zbioru X \cap Y wynosi 5
  20     Niech X = {a,b,c}.   
  Liczba różnych relacji binarnych w zbiorze X wynosi 28
  Liczba różnych relacji zwrotnych w zbiorze X wynosi 26
  Liczba różnych relacji symetrycznych w zbiorze X wynosi 26

Powrót