System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
2570 Malinowski Punkty: 8
  Test     Egzamin kończączy kurs z MAD 2003     2003-06-09  
  1     Czy dla dowolnych zbiorów A, B i C:   
  (A \setminus B) \cup B = A
  A\setminus (B\cap C)=(A\setminus B)\cup(B\setminus C)
  A\cap(B\setminus C)=(A\cap B)
  2     Czy dla dowolnych zbiorów A, B i C:   
  (A \cap B) \setminus B = \emptyset
  A \setminus (B \setminus C) = A \cap  (-B \cup C)
  A\setminus B = A \cap (-B)
  3     Czy dla dowolnych zbiorów A, B i C:   
  (-A) \cup (-B) = -(A \cap B)
  (A \setminus B) \subseteq (A \cap B)
  (A\cap B)\cap(A\setminus B)=\emptyset
  4     Czy następujące zdania są prawdziwe?   
  \forall _{x \in R}   \forall _{y \in R} [(x^{2}    \ge    y^{2})   \rightarrow (x \ge    y)]
  \forall _{x \in R}   \exists _{y \in R }[(x^{2} < y^{2})    \rightarrow (x < y)]
  \exists _{x \in R}   \forall _{y \in R }[(x < y)    \rightarrow  (x^{2} < y^{2})]
  5     Niech z będzie zdaniem: \forall _{x \in R}   \forall _{y \in R} [(x < y) \rightarrow  (x^{2} < y^{2})]. Czy zaprzeczeniem z jest   
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} > y^{2})]
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} < y^{2})]
  \exists _{x \in R}   \exists _{y \in R }[(x    \ge    y)   \land (x^{2}   \le    y^{2})]
  6     Dana jest formuła A = a \leftrightarrow (b \leftrightarrow c). Które z następujących formuł są równoważne z formułą A:   
  (a \land b) \leftrightarrow c
  b \leftrightarrow (a \leftrightarrow c)
  (a \leftrightarrow b) \leftrightarrow c
  7     Czy f \cdot f = f , jeśli:   
  f: R \rightarrow R, f(x) = 0
  f: R \rightarrow R, f(x) = x
  f: R \rightarrow R, f(x) = 2x
  8     Niech r \subseteq N \times N będzie relacją zdefiniowaną następująco: x r y \leftrightarrow x + y jest liczbą parzystą. Czy:   
  r jest relacją porządku
  r jest relacją spójną
  r jest relacją symetryczną
  9     Ustal prawdziwość następujących zdań:   
  Każdy element największy w zbiorze uporządkowanym jest elementem maksymalnym
  Kres górny dowolnego zbioru jest elementem tego zbioru
  W każdym zbiorze uporządkowanym istnieje co najwyżej jeden element maksymalny
  10     Czy następujące stwierdzenia są prawdziwe   
  Każda funkcja różnowartościowa f: N \rightarrow N jest funkcją "na"
  Każda funkcja różnowartościowa f: {1,2,3,4,5} \rightarrow {1,2,3,4,5} jest funkcją "na"
  Każda funkcja przekształcająca zbiór {1,2,3,4,5} na zbiór {1,2,3,4,5} jest funkcją różnowartościową
  11     Ustal prawdziwość następujących zdań:   
  Jeśli r1 i r2 są relacjami zwrotnymi, to jest nią również relacja r_1 \cap r_2
  Jeśli relacja r jest przechodnia to r \cdot r \subseteq r
  Jeśli relacja r jest zwrotna i przeciwzwrotna to r jest relacją pustą
  12     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację r następująco: X r Y wttw., gdy X \cap {1} = Y \cap {1}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  13     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację r : X r Y wttw., gdy X \cap Y = {1,2,4}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  14     Liczba liczb naturalnych nie przekraczających 100, które są podzielne przez 4 lub 6 jest równa   
  41
  33
  37
  15     Liczba funkcji różnowartościowych ze zbioru {1,2,3,4} w {1,2,3,4,5,6} jest równa   
  10.6^{2 }
  6!
  6^{4 }
  16     Liczba wszystkich funkcji f: {1,2,3,4,5} \rightarrow {0, 1} jest równa   
  5^{2 }
  2^{5 }
  2^{5 }- 2
  17     Załóżmy, że mamy dziesięć książek, wśród nich pięć powieści, trzy matematyczne, dwie historyczne. Uznając za równoważne książki danego typu,dziesięć książek w jednym rzędzie można ułożyć na tyle sposobów   
  {{10!}\over{5!3!2!}}
  C_{10}^5 .C_5^3 .C_2^2
  10!
  18     W urnie są 2 białe kule, 3 czerwone i 2 niebieskie. Losowo wybrano 2 kule   
  Prawdopodobieństwo tego, że kule są jednakowego koloru, jest mniejsze niż 1/500
  Prawdopodobieństwo tego, że kule są różnego koloru, jest większe niż 1/150
  Prawdopodobieństwo tego, że wśród wylosowanych nie ma białych, jest mniejsze niż 1/200
  19     Rzucono 2 kostkami symetrycznymi.   
  Prawdopodobieństwo tego, że suma oczek jest liczbą parzystą, jest mniejsze niż 1/2
  Prawdopodobieństwo tego, że suma oczek na obu kostkach nie przekracza 10, jest mniejsze niż 5/6
  Prawdopodobieństwo tego, że na pierwszej kostce wypadną dokładnie 3 oczka a na drugiej wypadną więcej niż 2 oczka, jest mniejsze niż 1/10
  20     Niech X = {a,b,c}.   
  Liczba różnych relacji binarnych w zbiorze X wynosi 28
  Liczba różnych relacji zwrotnych w zbiorze X wynosi 26
  Liczba różnych relacji symetrycznych w zbiorze X wynosi 26

Powrót