System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
3015 Malik Punkty: 10
  Test     Egzamin kończączy kurs z MAD 2003     2003-06-09  
  1     Niech A = {a, b, c}. Czy następujące stwierdzenia są prawdziwe?   
  \emptyset \subseteq P(A)
  \emptyset \in P(A)
  \emptyset \in A
  2     Czy następujące stwierdzenia są prawdziwe dla każdego zbioru A, B, C?   
  A \subseteq B \rightarrow -A \subseteq -B
  A \setminus C = B \setminus C \rightarrow A = B
  A \subseteq B \rightarrow C \setminus B \subseteq C \setminus A
  3     Niech P(n, m) oznacza własność "n jest dzielnikiem m". Czy następujące zdania są prawdziwe?   
  \exists _{n \in N}   \forall _{m \in N}   P(n, m)
  \forall _{n \in N}   \exists _{m \in N}   P(n, m)
  \exists _{n \in N}   \exists _{m \in N}   P(n, m)
  4     Czy następujące zdania są prawdziwe?   
  \forall _{x \in R}   \forall _{y \in R} [(x^{2}    \ge    y^{2})   \rightarrow (x \ge    y)]
  \forall _{x \in R}   \exists _{y \in R }[(x^{2} < y^{2})    \rightarrow (x < y)]
  \exists _{x \in R}   \forall _{y \in R }[(x < y)    \rightarrow  (x^{2} < y^{2})]
  5     Czy następujące wyrażenia są tautologiami rachunku zdań?   
  p \rightarrow (q \rightarrow p)
  (p \rightarrow p) \rightarrow p
  (p \land q) \rightarrow p
  6     Które zdania są tautologiami rachunku zdań:   
  (p \land q) \rightarrow (q \lor \lnot p)
  (p \land \lnot q) \rightarrow (\lnot p \lor q)
  (p \rightarrow q) \rightarrow \lnot p
  7     Które funkcje są jednocześnie "1-1" i "na":   
  f: R \rightarrow R, f(x) = (x2+1)1/2
  f: R \rightarrow R, f(x) = x2003
  f: R \rightarrow R, f(x) = x4
  8     Ustal prawdziwość następujących zdań:   
  Relacja r = {(x,y) \in N \times N: x2 mod 3 = y2 mod 3} ma 3 klasy abstrakcji
  Suma wszystkich klas abstrakcji danej relacji równoważności w zbiorze X jest równa X
  Przecięcie wszystkich klas abstrakcji danej relacji równoważności w zbiorze X jest zbiorem pustym
  9     Niech A = {1,2,3,4,5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w zbiorze S relację r następująco: X r Y wttw., gdy X \cap {1,2,5} = Y \cap {1,2,5}. Wynika z tego, że   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  10     Dana jest relacja r określona na zbiorze R: x\  r\  y \leftrightarrow |x+y| = 1. Wynika z tego, że   
  r jest zwrotna, antysymetryczna i nie jest przechodnia
  r jest symetryczna, nie jest przechodnia i nie jest przeciwzwrotna
  r jest symetryczna i nie jest zwrotna
  11     Ustal prawdziwość następujących zdań:   
  Jeśli r1 i r2 są relacjami zwrotnymi, to jest nią również relacja r_1 \cap r_2
  Jeśli relacja r jest przechodnia to r \cdot r \subseteq r
  Jeśli relacja r jest zwrotna i przeciwzwrotna to r jest relacją pustą
  12     Rozważmy ciągi bitów zerojedynkowych o długości 10. Czy następujące stwierdzenia są prawdziwe?   
  Ciągów, które zawierają co najmniej 3 zera jest 2^{7 }
  Ciągów, które zawierają dokładnie 4 zera jest 210
  Liczba wszystkich takich ciągów jest równa 2^{10 }
  13     Zbadamy ciągi bitów zerojedynkowych o długości 10. Czy następujące stwierdzenia są prawdziwe?   
  Ciągów zawierających tyle samo jedynek co zer jest 2^{5 }
  Ciągów niemalejących jest 11
  Ciągów zaczynających się od bitów 10011 jest 2^{5 }
  14     Załóżmy, że mamy dziesięć książek, wśród nich pięć powieści, trzy matematyczne, dwie historyczne. Uznając za równoważne książki danego typu,dziesięć książek w jednym rzędzie można ułożyć na tyle sposobów   
  {{10!}\over{5!3!2!}}
  C_{10}^5 .C_5^3 .C_2^2
  10!
  15     Załóżmy, że mamy dziesięć książek, wśród nich pięć powieści, trzy matematyczne i dwie historyczne. Wybieramy siedem książek, wśród nich trzy powieści, dwie matematyczne i dwie historyczne. Liczba sposobów wybierania jest równa   
  C_5^3 + C_3^2 + C_2^2
  3! + 2! + 2!
  C_5^3 .C_3^2 .C_2^2
  16     Losowo ustawiano 4 litery a, b, c, d w ciągu.   
  Prawdopodobieństwo tego, że a i b stoją obok siebie, wynosi 1/3
  Prawdopodobieństwo tego, że a i b są rozdzielone jedną literą, wynosi 1/3
  Prawdopodobieństwo tego, że a i b są rozdzielone dwiema literami, wynosi 1/4
  17     Rzucono 5 razy symetryczną monetą.   
  Prawdopodobieństwo tego, że orzeł wypada dokładnie raz, jest mniejsze niż 1/6
  Prawdopodobieństwo tego, że orzeł wypada co najmniej 2 razy, jest większe niż 3/4
  Prawdopodobieństwo tego, że orzeł wypada (dokładnie) 2 razy z rzędu, jest większe niż 1/10
  18     Rzucono symetryczną monetą.   
  Prawdopodobieństwo tego, że orzeł wypada za pierwszym razem, wynosi 1/3
  Prawdopodobieństwo tego, że orzeł wypada co najmniej po trzech rzutach,wynosi 1/4
  Prawdopodobieństwo tego, że orzeł wypada w pierwszym i w trzecim rzucie,wynosi 1/8
  19     Niech X = {1,2,3}, Y = {4,5}.   
  Liczba funkcji ze zbioru X w zbiór Y wynosi 8
  Liczba funkcji różnowartościowych ze zbioru Y w zbioru X wynosi 6
  Liczba permutacji zbioru X \cap Y wynosi 5
  20     Dla dowolnych ziorów A,B,C zachodzi  
  (A\oplus B)\oplus B = A
  (A\oplus B)\oplus C=A\oplus(B\oplus C)
  (A\oplus B)\oplus C=(A\oplus C)\oplus B

Powrót