System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
2681 Widarski Punkty: 6
  Test     Egzamin kończączy kurs z MAD 2003     2003-06-09  
  1     Czy następujące stwierdzenia są prawdziwe dla każdego zbioru A, B, C?   
  A \cup (A \cap B) = A
  (A \setminus B) \cup B = A
   (A\cup B)\setminus B=A
  2     Czy dla dowolnych zbiorów A, B i C:   
  (-A) \cup (-B) = -(A \cap B)
  (A \setminus B) \subseteq (A \cap B)
  (A\cap B)\cap(A\setminus B)=\emptyset
  3     Czy dla dowolnych zbiorów A, B i C:   
  A \times B = B \times A
  A\times (B\cap C)=(A\times B)\cap (A\times C)
  A\times B\subseteq A\times (A\cap B)
  4     Niech P(n, m) oznacza własność "n jest dzielnikiem m". Czy następujące zdania są prawdziwe?   
  \exists _{n \in N}   \forall _{m \in N}   P(n, m)
  \forall _{n \in N}   \exists _{m \in N}   P(n, m)
  \exists _{n \in N}   \exists _{m \in N}   P(n, m)
  5     Czy następujące zdania są prawdziwe?   
  \forall _{x \in R}   \forall _{y \in R} [(x^{2}    \ge    y^{2})   \rightarrow (x \ge    y)]
  \forall _{x \in R}   \exists _{y \in R }[(x^{2} < y^{2})    \rightarrow (x < y)]
  \exists _{x \in R}   \forall _{y \in R }[(x < y)    \rightarrow  (x^{2} < y^{2})]
  6     Czy następujące wyrażenia są tautologiami rachunku zdań?   
  p \rightarrow (q \rightarrow p)
  (p \rightarrow p) \rightarrow p
  (p \land q) \rightarrow p
  7     Dana jest formuła F = (\exists x)(\forall y)(\exists z)[z>y \leftrightarrow z=x+1]. Które z następujących formuł są zaprzeczeniem formuły F:   
  (\forall x)(\exists y)(\forall z)[z>y \land z=x+1]
  (\forall x)(\exists y)(\forall z)[z>y \land z \neq x+1]
  (\exists x)(\forall y)(\exists z)[z=x+1 \leftrightarrow z>y]
  8     Niech f będzie funkcją odwzorowującą zbiór liczb rzeczywistych R w R, f(x) = x^2 -x -2. Czy:   
  f^{-1}(\{0\}) = \{0\}
  f nie jest "1-1" i nie jest "na"
  f((-1,2))\subseteq f([-1,2])
  9     Niech r \subseteq R \times R. Czy następujące relacje są funkcjami ?   
  x r y wttw., gdy x < y + 1
  x r y wttw., gdy x = y + 1
  x r y wttw., gdy x^{2} = y^{2}
  10     Niech A = {1,2,3,4,5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację równoważności r: X r Y wttw., gdy X\cap\{2,4,5\} = Y \cap \{2,4,5\}Czy następujące stwierdzenia są prawdziwe?   
  Klasa abstrakcji [\emptyset ]_{r} zawiera 1 element
  Klasa abstrakcji [A]_{r} zawiera 4 elementy
  Klasa abstrakcji [{1,2}] zawiera 2 elementy
  11     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację równoważności r: X r Y wttw., gdy X \cup {1,2} = Y \cup {1,2}. Czy następujące stwierdzenia są prawdziwe?   
  Klasa abstrakcji [\emptyset ]_{r} zawiera 4 elementy
  Klasa abstrakcji [A]_{r} zawiera 5 elementów
  Klasa abstrakcji [{3}]_{r} zawiera 2 elementy
  12     Niech A = {0,1,2,3,4,5}. Relacja r \subseteq A\times A jest określona następująco: x r y wttw, gdy xy\ mod\ 5 = 1. Czy następujące zdania są prawdziwe?   
  r jest zwrotna
  r jest symetryczna
  r jest spójna
  13     Liczba funkcji przekształcających zbiór {1,2,3,4,5} na zbiór {0, 1} jest równa   
  2^{5 }
  5^{2 }
  10
  14     Rozważmy ciągi bitów zerojedynkowych o długości 10. Czy następujące stwierdzenia są prawdziwe?   
  Ciągów, które zawierają co najmniej 3 zera jest 2^{7 }
  Ciągów, które zawierają dokładnie 4 zera jest 210
  Liczba wszystkich takich ciągów jest równa 2^{10 }
  15     Załóżmy, że mamy dziesięć książek, wśród nich pięć powieści, trzy matematyczne, dwie historyczne. Uznając za równoważne książki danego typu,dziesięć książek w jednym rzędzie można ułożyć na tyle sposobów   
  {{10!}\over{5!3!2!}}
  C_{10}^5 .C_5^3 .C_2^2
  10!
  16     Załóżmy, ze mamy dziesięć książek, wśród nich cztery powieści, trzy matematyczne i trzy historyczne. Liczba sposobów ułożenia dziesięciu książek w jednym rzędzie tak, że powieści są na początku, następnie książki matematyczne a na końcu książki historyczne jest równa   
  C_{10}^4 + C_6^3 + C_3^3
  3!.3!.4!
  4! + 2.3!
  17     W urnie są 2 białe kule, 3 czerwone i 2 niebieskie. Losowo wybrano 2 kule   
  Prawdopodobieństwo tego, że kule są jednakowego koloru, jest mniejsze niż 1/500
  Prawdopodobieństwo tego, że kule są różnego koloru, jest większe niż 1/150
  Prawdopodobieństwo tego, że wśród wylosowanych nie ma białych, jest mniejsze niż 1/200
  18     W urnie są 4 białe i 3 czerwone kule. Wyciągano z urny 2 razy po jednej kuli ze zwracaniem   
  Prawdopodobieństwo tego, że kule są różnego koloru, jest mniejsze niż 1/2
  Prawdopodobieństwo tego, że pierwsza wylosowana kula jest biała, wynosi 4/7
  Prawdopodobieństwo tego, że kule są jednakowego koloru, jest mniejsze niż 1/2
  19     Niech X = {1,2,3}, Y = {4,5}.   
  Liczba funkcji ze zbioru X w zbiór Y wynosi 8
  Liczba funkcji różnowartościowych ze zbioru Y w zbioru X wynosi 6
  Liczba permutacji zbioru X \cap Y wynosi 5
  20     Niech L=(p \land \lnot r) \land (p \rightarrow r), B=(p \rightarrow r) \land (r \rightarrow p).   
  L nie jest tautologią
  istnieje wartościowanie takie, że L jest prawdziwe
  B jest tautologią

Powrót