System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
2573 Malinowski Punkty: 12
  Test     Egzamin kończączy kurs z MAD 2003     2003-06-09  
  1     Niech A = {a, b, c}. Czy następujące stwierdzenia są prawdziwe ?   
  {b, c} \in P(A)
  {a} \subseteq P(A)
  {a} \in P(A)
  2     Czy następujące stwierdzenia są prawdziwe dla każdego zbioru A, B, C?   
  A \cup (A \cap B) = A
  (A \setminus B) \cup B = A
   (A\cup B)\setminus B=A
  3     Czy dla dowolnych zbiorów A, B i C:   
  (A \cap B) \setminus B = \emptyset
  A \setminus (B \setminus C) = A \cap  (-B \cup C)
  A\setminus B = A \cap (-B)
  4     Czy dla dowolnych zbiorów A, B i C:   
  A \times B = B \times A
  A\times (B\cap C)=(A\times B)\cap (A\times C)
  A\times B\subseteq A\times (A\cap B)
  5     Niech z będzie zdaniem: \forall _{x \in R}   \forall _{y \in R} [(x < y) \rightarrow  (x^{2} < y^{2})]. Czy zaprzeczeniem z jest   
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} > y^{2})]
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} < y^{2})]
  \exists _{x \in R}   \exists _{y \in R }[(x    \ge    y)   \land (x^{2}   \le    y^{2})]
  6     Które z następujących wyrażeń są tautologiami rachunku predykatów:   
  ((\exists x)a(x)) \leftrightarrow ((\forall x)a(x))
  ((\exists x)(a(x) \land b(x))) \leftrightarrow ((\exists x)(a(x) \lor b(x)))
  ((\forall x)(a(x) \lor b(x))) \leftrightarrow ((\forall x)(a(x) \land b(x)))
  7     Dana jest formuła F = (\exists x)(\forall y)(\exists z)[z>y \leftrightarrow z=x+1]. Które z następujących formuł są zaprzeczeniem formuły F:   
  (\forall x)(\exists y)(\forall z)[z>y \land z=x+1]
  (\forall x)(\exists y)(\forall z)[z>y \land z \neq x+1]
  (\exists x)(\forall y)(\exists z)[z=x+1 \leftrightarrow z>y]
  8     Niech f będzie funkcją odwzorowującą zbiór liczb rzeczywistych R w R, f(x) = x^2 -x -2. Czy:   
  f^{-1}(\{0\}) = \{0\}
  f nie jest "1-1" i nie jest "na"
  f((-1,2))\subseteq f([-1,2])
  9     Ustal prawdziwość następujących zdań:   
  Relacja r = {(x,y) \in N \times N: x2 mod 3 = y2 mod 3} ma 3 klasy abstrakcji
  Suma wszystkich klas abstrakcji danej relacji równoważności w zbiorze X jest równa X
  Przecięcie wszystkich klas abstrakcji danej relacji równoważności w zbiorze X jest zbiorem pustym
  10     Rozważmy zbiór A=\{3,6,9,12,18\}, będący podzbiorem zbioru N uporządkowanego przez relację: x r y \leftrightarrow y jest dzielnikiem x.   
  3 jest elementem największym w A
  18 jest kresem dolnym zbioru A
  Elementy minimalne zbioru A to 12, 18
  11     Niech A = {1,2,3,4,5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację równoważności r: X r Y wttw., gdy X\cap\{2,4,5\} = Y \cap \{2,4,5\}Czy następujące stwierdzenia są prawdziwe?   
  Klasa abstrakcji [\emptyset ]_{r} zawiera 1 element
  Klasa abstrakcji [A]_{r} zawiera 4 elementy
  Klasa abstrakcji [{1,2}] zawiera 2 elementy
  12     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację r następująco: X r Y wttw., gdy X \cap {1} = Y \cap {1}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  13     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację równoważności r: X r Y wttw., gdy X \cup {1,2} = Y \cup {1,2}. Czy następujące stwierdzenia są prawdziwe?   
  Klasa abstrakcji [\emptyset ]_{r} zawiera 4 elementy
  Klasa abstrakcji [A]_{r} zawiera 5 elementów
  Klasa abstrakcji [{3}]_{r} zawiera 2 elementy
  14     Liczba funkcji różnowartościowych ze zbioru {1,2,3,4} w {1,2,3,4,5,6} jest równa   
  10.6^{2 }
  6!
  6^{4 }
  15     Liczba funkcji przekształcających zbiór {1,2,3,4,5} na zbiór {0, 1} jest równa   
  2^{5 }
  5^{2 }
  10
  16     Załóżmy, że mamy dziesięć książek, wśród nich pięć powieści, trzy matematyczne i dwie historyczne. Wybieramy siedem książek, wśród nich trzy powieści, dwie matematyczne i dwie historyczne. Liczba sposobów wybierania jest równa   
  C_5^3 + C_3^2 + C_2^2
  3! + 2! + 2!
  C_5^3 .C_3^2 .C_2^2
  17     Rzucono 5 razy symetryczną monetą.   
  Prawdopodobieństwo tego, że orzeł wypada dokładnie raz, jest mniejsze niż 1/6
  Prawdopodobieństwo tego, że orzeł wypada co najmniej 2 razy, jest większe niż 3/4
  Prawdopodobieństwo tego, że orzeł wypada (dokładnie) 2 razy z rzędu, jest większe niż 1/10
  18     Rzucono 4 razy symetryczną monetą.   
  Prawdopodobieństwo tego, że orzeł nie wypada ani razu, jest mniejsze niż 1/10
  Prawdopodobieństwo tego, że orzeł wypada dokładnie 3 razy, jest większe niż 1/5
  Prawdopodobieństwo tego, że orzeł wypada częściej niż reszka, jest większe niż 1/3
  19     Niech X = {a,b,c}.   
  Liczba różnych relacji binarnych w zbiorze X wynosi 28
  Liczba różnych relacji zwrotnych w zbiorze X wynosi 26
  Liczba różnych relacji symetrycznych w zbiorze X wynosi 26
  20     Niech X=(A \setminus (A \cap B)) \cap C, Y=(B \oplus C) \cap A. Czy zawsze zachodzi:   
  X=Y
  X \subseteq Y
  X \cap Y \subseteq A

Powrót