System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
3013 Majdecki Punkty: 14
  Test     Egzamin poprawkowy z MAD 2003     2003-07-07  
  1     Ile elementów ma zbiór P(A), jeżeli A={1, {1}, \emptyset}:   
  4
  8
  Tyle ile ma zbiór P({1,2,3})
  2     Czy dla dowolnych zbiorów A, B i C:   
  (A \cap B) \setminus B = \emptyset
  A \setminus (B \setminus C) = A \cap  (-B \cup C)
  A\setminus B = A \cap (-B)
  3     Czy następujące zdania są prawdziwe?   
  \forall _{x \in R}   \forall _{y \in R} [(x^{2}    \ge    y^{2})   \rightarrow (x \ge    y)]
  \forall _{x \in R}   \exists _{y \in R }[(x^{2} < y^{2})    \rightarrow (x < y)]
  \exists _{x \in R}   \forall _{y \in R }[(x < y)    \rightarrow  (x^{2} < y^{2})]
  4     Niech z będzie zdaniem: \forall _{x \in R}   \forall _{y \in R} [(x < y) \rightarrow  (x^{2} < y^{2})]. Czy zaprzeczeniem z jest   
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} > y^{2})]
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} < y^{2})]
  \exists _{x \in R}   \exists _{y \in R }[(x    \ge    y)   \land (x^{2}   \le    y^{2})]
  5     Ustal prawdziwość następujących zdań:   
  Każdy element największy w zbiorze uporządkowanym jest elementem maksymalnym
  Kres górny dowolnego zbioru jest elementem tego zbioru
  W każdym zbiorze uporządkowanym istnieje co najwyżej jeden element maksymalny
  6     Niech r \subseteq R \times R. Czy następujące relacje są funkcjami   
  x\ r\ y wttw., gdy x^{2} = y +1
  x\ r\ y wttw., gdy x^{2} < y^{2}
  x\ r\ y wttw., gdy x+y = 3
  7     Niech A = {1,2,3,4,5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w zbiorze S relację r następująco: X r Y wttw., gdy X \cap {1,2,5} = Y \cap {1,2,5}. Wynika z tego, że   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  8     Niech A = {1,2,3,4,5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację równoważności r: X r Y wttw., gdy X\cap\{2,4,5\} = Y \cap \{2,4,5\}Czy następujące stwierdzenia są prawdziwe?   
  Klasa abstrakcji [\emptyset ]_{r} zawiera 1 element
  Klasa abstrakcji [A]_{r} zawiera 4 elementy
  Klasa abstrakcji [{1,2}] zawiera 2 elementy
  9     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację r : X r Y wttw., gdy X \cap Y = {1,2,3}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją zwrotną
  r jest relacją antysymetryczną
  r jest relacją przechodnią
  10     Liczba liczb naturalnych nie przekraczających 100, które są podzielne przez 4 lub 6 jest równa   
  41
  33
  37
  11     Losowo ustawiano 4 litery a, b, c, d w ciągu.   
  Prawdopodobieństwo tego, że a i b stoją obok siebie, wynosi 1/3
  Prawdopodobieństwo tego, że a i b są rozdzielone jedną literą, wynosi 1/3
  Prawdopodobieństwo tego, że a i b są rozdzielone dwiema literami, wynosi 1/4
  12     W urnie są 2 białe kule, 3 czerwone i 2 niebieskie. Losowo wybrano 2 kule   
  Prawdopodobieństwo tego, że kule są jednakowego koloru, jest mniejsze niż 1/500
  Prawdopodobieństwo tego, że kule są różnego koloru, jest większe niż 1/150
  Prawdopodobieństwo tego, że wśród wylosowanych nie ma białych, jest mniejsze niż 1/200
  13     W urnie są 4 białe i 3 czerwone kule. Wyciągano z urny 2 razy po jednej kuli ze zwracaniem   
  Prawdopodobieństwo tego, że kule są różnego koloru, jest mniejsze niż 1/2
  Prawdopodobieństwo tego, że pierwsza wylosowana kula jest biała, wynosi 4/7
  Prawdopodobieństwo tego, że kule są jednakowego koloru, jest mniejsze niż 1/2
  14     Cyfry 0, 1, 2,....9 losowo ustawiano w ciąg.   
  Prawdopodobieństwo tego, że otrzymany ciąg jest ciągiem rosnącym, wynosi 1/10
  Prawdopodobieństwo tego, że 0 stoi bezpośrednio przed 1, wynosi {9}\over{10!}
  Prawdopodobieństwo tego, że 0, 1, 2 stoją obok siebie, jest większe niż {1}\over{10!}
  15     Niech L=(q \lor p) \rightarrow \lnot p, B=(p \land q) \rightarrow p. Tautologią jest:   
  L
  L \land B
  L \rightarrow B
  16     Niech X=(A \setminus (A \cap B)) \cap C, Y=(B \oplus C) \cap A. Czy zawsze zachodzi:   
  X=Y
  Y \subseteq X
  X \subseteq Y
  17     Dane są dwa zbiory A i B. Niech X=(A \setminus B) i Y=(-B \cap A). Czy zawsze zachodzi:   
  X \in Y
  Y \subseteq X
  (X \cup Y)=(A \cap B)
  18     Na ile sposobów z n-pracowników można wybrać k-osobową delegację?   
  {n-k \choose n}
  {n \choose n-k}
  {{n!}\over{(n-k)!}}
  19     Ile jest ciągów 0, 1 długości n>2, jeżeli wiemy, że na pierwszej i ostatniej pozycji jest 0?   
  2^{n-1} - 2^{n-2}
  2^n-2
  n^2 - {n \choose 2}
  20     Dla dowolnych ziorów A,B,C zachodzi  
  (A\oplus B)\oplus B = A
  (A\oplus B)\oplus C=A\oplus(B\oplus C)
  (A\oplus B)\oplus C=(A\oplus C)\oplus B

Powrót