System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
2479 Drzewicki Punkty: 12
  Test     Egzamin poprawkowy z MAD 2003     2003-07-07  
  1     Czy następujące stwierdzenia są prawdziwe dla każdego zbioru A, B, C?   
  A \cup (A \cap B) = A
  (A \setminus B) \cup B = A
   (A\cup B)\setminus B=A
  2     Czy następujące wyrażenia są tautologiami rachunku zdań?   
  p \rightarrow (q \rightarrow p)
  (p \rightarrow p) \rightarrow p
  (p \land q) \rightarrow p
  3     Niech a(x) = "x < 1", b(x) = "x2>2" będą funkcjami zdaniowymi, których zakresem zmienności jest zbiór liczb rzeczywistych R. Które z następujących formuł są prawdziwe w R:   
  ((\exists x)a(x) \land (\exists x)b(x))
  (\exists x)(a(x) \land b(x))
  (\forall x)(a(x) \leftrightarrow b(x))
  4     Dana jest formuła A = a \leftrightarrow (b \leftrightarrow c). Które z następujących formuł są równoważne z formułą A:   
  (a \land b) \leftrightarrow c
  b \leftrightarrow (a \leftrightarrow c)
  (a \leftrightarrow b) \leftrightarrow c
  5     Ustal prawdziwość następujących zdań:   
  Jeśli \langle X,r\rangle jest zbiorem uporządkowanym to \langle X,r^{-1}\rangle też jest zbiorem uporządkowanym
  Zbiór liczb rzeczywistych R nie jest dobrze uporządkowany przez relację niewiększości
  Jeśli \langle X,r\rangle jest zbiorem uporządkowanym to \langle X,X^2\setminus r\rangle też jest zbiorem uporządkowanym
  6     Dana jest relacja r określona na zbiorze R: x\  r\  y \leftrightarrow |x+y| = 1. Wynika z tego, że   
  r jest zwrotna, antysymetryczna i nie jest przechodnia
  r jest symetryczna, nie jest przechodnia i nie jest przeciwzwrotna
  r jest symetryczna i nie jest zwrotna
  7     Niech A = {1,2,3,4,5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację równoważności r: X r Y wttw., gdy X\cap\{2,4,5\} = Y \cap \{2,4,5\}Czy następujące stwierdzenia są prawdziwe?   
  Klasa abstrakcji [\emptyset ]_{r} zawiera 1 element
  Klasa abstrakcji [A]_{r} zawiera 4 elementy
  Klasa abstrakcji [{1,2}] zawiera 2 elementy
  8     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację r następująco: X r Y wttw., gdy X \cap {1} = Y \cap {1}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  9     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację r : X r Y wttw., gdy X \cap Y = {1,2,4}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  10     Liczba liczb naturalnych nie przekraczających 100, które są podzielne przez 4 lub 6 jest równa   
  41
  33
  37
  11     Rzucono dwiema kostkami symetrycznymi.   
  Prawdopodobieństwo tego, że szóstka nie wypada jednocześnie na obu kostkach wynosi 25/36
  Prawdopodobieństwo tego, że na pierwszej kostce wypada więcej oczek niż na drugiej jest równe 15/36
  Prawdopodobieństwo tego, że suma oczek na obu kostkach jest większa niż 4, wynosi 2/3
  12     W urnie są 2 białe kule, 3 czerwone i 2 niebieskie. Losowo wybrano 2 kule   
  Prawdopodobieństwo tego, że kule są jednakowego koloru, jest mniejsze niż 1/500
  Prawdopodobieństwo tego, że kule są różnego koloru, jest większe niż 1/150
  Prawdopodobieństwo tego, że wśród wylosowanych nie ma białych, jest mniejsze niż 1/200
  13     Rzucono symetryczną monetą.   
  Prawdopodobieństwo tego, że orzeł wypada za pierwszym razem, wynosi 1/3
  Prawdopodobieństwo tego, że orzeł wypada co najmniej po trzech rzutach,wynosi 1/4
  Prawdopodobieństwo tego, że orzeł wypada w pierwszym i w trzecim rzucie,wynosi 1/8
  14     Niech X = {1,2,3}, Y = {4,5}.   
  Liczba funkcji ze zbioru X w zbiór Y wynosi 8
  Liczba funkcji różnowartościowych ze zbioru Y w zbioru X wynosi 6
  Liczba permutacji zbioru X \cap Y wynosi 5
  15     Niech L=(q \lor p) \rightarrow \lnot p, B=(p \land q) \rightarrow p. Tautologią jest:   
  L
  L \rightarrow B
  B \lor L
  16     Niech L=(p \lor r) \rightarrow (p \rightarrow r), B=(p \lor (r \rightarrow p)) \lor r.   
  L nie jest tautologią
  \lnot B= (\lnot p \land (r \land \lnot p)) \land \lnot r
  L \rightarrow B jest tautologią
  17     Niech X=(A \setminus (A \cap B)) \cap C, Y=(B \oplus C) \cap A. Czy zawsze zachodzi:   
  X=Y
  Y \subseteq X
  X \subseteq Y
  18     Dane są dwa zbiory: A={8, 8, {8}}, B={8, {{8}}}. Czy jest prawdą, że:   
  |A \cap B| = 1
  |A|=|B|+1
  B \setminus A = \emptyset
  19     Na ile sposobów z n-pracowników można wybrać k-osobową delegację?   
  {n-k \choose n}
  {n \choose n-k}
  {{n!}\over{(n-k)!}}
  20     Niech f(x)=x^2.   
  f jest na, gdy dom(f)=R, cod(f)=R_+ \cup {0}
  f jest różnowartościowa, gdy f: R \rightarrow R
  f jest bijekcją, gdy f: R_+ \cup {0} \rightarrow R_+

Powrót