System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
2607 Perzyna Punkty: 10
  Test     Egzamin kończączy kurs z MAD 2003     2003-06-09  
  1     Niech A = {a, b, c}. Czy następujące stwierdzenia są prawdziwe ?   
  {b, c} \in P(A)
  {a} \subseteq P(A)
  {a} \in P(A)
  2     Niech X będzie zbiorem n-elementowym. Ile elementów ma zbiór P(X) \cap\{\emptyset\}:   
  3
  n
  1
  3     Czy dla dowolnych zbiorów A, B i C:   
  (-A) \cup (-B) = -(A \cap B)
  (A \setminus B) \subseteq (A \cap B)
  (A\cap B)\cap(A\setminus B)=\emptyset
  4     Czy dla dowolnych zbiorów A, B i C:   
  A \times B = B \times A
  A\times (B\cap C)=(A\times B)\cap (A\times C)
  A\times B\subseteq A\times (A\cap B)
  5     Czy następujące zdania są prawdziwe?   
  \forall _{x \in R}   \forall _{y \in R} [(x^{2}    \ge    y^{2})   \rightarrow (x \ge    y)]
  \forall _{x \in R}   \exists _{y \in R }[(x^{2} < y^{2})    \rightarrow (x < y)]
  \exists _{x \in R}   \forall _{y \in R }[(x < y)    \rightarrow  (x^{2} < y^{2})]
  6     Niech z będzie zdaniem: \forall _{x \in R}   \exists _{y \in R} [(x^{2}   \ge    y^{2})    \rightarrow  (x    \ge    y)]. Czy zaprzeczeniem z jest   
  \exists _{x \in R}   \forall _{y \in R} [(x^{2}    \ge    y^{2}) \land  (x < y)]
  \exists _{x \in R}   \forall _{y \in R} [(x^{2}    \ge    y^{2}) \land  (x    \le    y)]
  \exists _{x \in R}   \forall _{y \in R }[(x^{2} < y^{2})    \rightarrow (x < y)]
  7     Niech z będzie zdaniem: \forall _{x \in R}   \forall _{y \in R} [(x < y) \rightarrow  (x^{2} < y^{2})]. Czy zaprzeczeniem z jest   
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} > y^{2})]
  \exists _{x \in R}   \exists _{y \in R} [(x    \ge    y)   \land (x^{2} < y^{2})]
  \exists _{x \in R}   \exists _{y \in R }[(x    \ge    y)   \land (x^{2}   \le    y^{2})]
  8     Dana jest formuła F = (\exists x)(\forall y)(\exists z)[z>y \leftrightarrow z=x+1]. Które z następujących formuł są zaprzeczeniem formuły F:   
  (\forall x)(\exists y)(\forall z)[z>y \land z=x+1]
  (\forall x)(\exists y)(\forall z)[z>y \land z \neq x+1]
  (\exists x)(\forall y)(\exists z)[z=x+1 \leftrightarrow z>y]
  9     Które funkcje są jednocześnie "1-1" i "na":   
  f: R \rightarrow R, f(x) = (x2+1)1/2
  f: R \rightarrow R, f(x) = x2003
  f: R \rightarrow R, f(x) = x4
  10     Ustal prawdziwość następujących zdań:   
  Jeśli \langle X,r\rangle jest zbiorem uporządkowanym to \langle X,r^{-1}\rangle też jest zbiorem uporządkowanym
  Zbiór liczb rzeczywistych R nie jest dobrze uporządkowany przez relację niewiększości
  Jeśli \langle X,r\rangle jest zbiorem uporządkowanym to \langle X,X^2\setminus r\rangle też jest zbiorem uporządkowanym
  11     Ustal prawdziwość następujących zdań:   
  Jeśli r jest relacją symetryczną i przechodnią, to r jest zwrotna
  Przecięcie dwóch relacji zwrotnych jest relacją zwrotną
  Suma relacji przeciwsymetrycznej i symetrycznej jest relacją symetryczną
  12     Ustal prawdziwość następujących zdań:   
  Jeśli r1 i r2 są relacjami zwrotnymi, to jest nią również relacja r_1 \cap r_2
  Jeśli relacja r jest przechodnia to r \cdot r \subseteq r
  Jeśli relacja r jest zwrotna i przeciwzwrotna to r jest relacją pustą
  13     Niech A= {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy na S relację r następująco: X r Y wttw., gdy X \cup  \{1\} = Y \cup \{1\}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją zwrotną
  r jest relacją antysymetryczną
  r jest relacją przechodnią
  14     Niech A = {1, 2, 3, 4, 5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację r następująco: X r Y wttw., gdy X \cap {1} = Y \cap {1}. Czy następujące stwierdzenia są prawdziwe?   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  15     Liczba liczb naturalnych nie przekraczających 100, które są podzielne przez 4 lub 6 jest równa   
  41
  33
  37
  16     Liczba funkcji różnowartościowych ze zbioru {1,2,3,4} w {1,2,3,4,5,6} jest równa   
  10.6^{2 }
  6!
  6^{4 }
  17     Liczba funkcji przekształcających zbiór {1,2,3,4,5} na zbiór {0, 1} jest równa   
  2^{5 }
  5^{2 }
  10
  18     Rzucono 5 razy symetryczną monetą.   
  Prawdopodobieństwo tego, że orzeł wypada dokładnie raz, jest mniejsze niż 1/6
  Prawdopodobieństwo tego, że orzeł wypada co najmniej 2 razy, jest większe niż 3/4
  Prawdopodobieństwo tego, że orzeł wypada (dokładnie) 2 razy z rzędu, jest większe niż 1/10
  19     Rzucono 4 razy symetryczną monetą.   
  Prawdopodobieństwo tego, że orzeł nie wypada ani razu, jest mniejsze niż 1/10
  Prawdopodobieństwo tego, że orzeł wypada dokładnie 3 razy, jest większe niż 1/5
  Prawdopodobieństwo tego, że orzeł wypada częściej niż reszka, jest większe niż 1/3
  20     Niech A, B, C, D będą zbiorami nieskończonymi, oraz X = {A,B,C,D}.   
  Zbiór X jest nieskończony
  Zbiór P(X) ma 4^4 elementów
  Zbiór {P(X),X,A,B,C,D} jest nieskończony

Powrót