System do przeprowadzania egzaminów w internecie - Moduł studenta ::.. ..:: 16-02-2005 ::..
 
   
  MENU           Zalogowany jako: s3361  
 
 
Posortuj testy
    - według daty
    - według przedmiotu
    - według tytułu
 
Napisz test
 
Zmiana hasła
 
 
Wyloguj się

 

 

 

 
2861 Woźnicki Punkty: 8
  Test     Egzamin kończączy kurs z MAD 2003     2003-06-09  
  1     Niech A = {a, b, c}. Czy następujące stwierdzenia są prawdziwe ?   
  {b, c} \in P(A)
  {a} \subseteq P(A)
  {a} \in P(A)
  2     Czy następujące stwierdzenia są prawdziwe dla każdego zbioru A, B, C?   
  A \subseteq B \rightarrow -A \subseteq -B
  A \setminus C = B \setminus C \rightarrow A = B
  A \subseteq B \rightarrow C \setminus B \subseteq C \setminus A
  3     Czy dla dowolnych zbiorów A, B i C:   
  (-A) \cup (-B) = -(A \cap B)
  (A \setminus B) \subseteq (A \cap B)
  (A\cap B)\cap(A\setminus B)=\emptyset
  4     Niech P(n, m) oznacza własność "n jest dzielnikiem m". Czy następujące zdania są prawdziwe?   
  \exists _{n \in N}   \forall _{m \in N}   P(n, m)
  \forall _{n \in N}   \exists _{m \in N}   P(n, m)
  \exists _{n \in N}   \exists _{m \in N}   P(n, m)
  5     Które z następujących wyrażeń są tautologiami rachunku predykatów:   
  ((\exists x)a(x)) \leftrightarrow ((\forall x)a(x))
  ((\exists x)(a(x) \land b(x))) \leftrightarrow ((\exists x)(a(x) \lor b(x)))
  ((\forall x)(a(x) \lor b(x))) \leftrightarrow ((\forall x)(a(x) \land b(x)))
  6     Które zdania są tautologiami rachunku zdań:   
  (p \land q) \rightarrow (q \lor \lnot p)
  (p \land \lnot q) \rightarrow (\lnot p \lor q)
  (p \rightarrow q) \rightarrow \lnot p
  7     Które funkcje są jednocześnie "1-1" i "na":   
  f: R \rightarrow R, f(x) = (x2+1)1/2
  f: R \rightarrow R, f(x) = x2003
  f: R \rightarrow R, f(x) = x4
  8     Czy f \cdot f = f , jeśli:   
  f: R \rightarrow R, f(x) = 0
  f: R \rightarrow R, f(x) = x
  f: R \rightarrow R, f(x) = 2x
  9     Które relacje są relacjami równoważności:   
  r = {(x,y) \in N \times N: x2 = y}
  r = {(x,y) \in R \times R: max(x,y) = 1}
  r = {(x,y) \in N \times N: x1/2 = y1/2}
  10     Niech A = {1,2,3,4,5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w zbiorze S relację r następująco: X r Y wttw., gdy X \cap {1,2,5} = Y \cap {1,2,5}. Wynika z tego, że   
  r jest relacją przeciwzwrotną
  r jest relacją symetryczną
  r jest relacją spójną
  11     Ustal prawdziwość następujących zdań:   
  Jeśli r jest relacją symetryczną i przechodnią, to r jest zwrotna
  Przecięcie dwóch relacji zwrotnych jest relacją zwrotną
  Suma relacji przeciwsymetrycznej i symetrycznej jest relacją symetryczną
  12     Niech A = {1,2,3,4,5}. Niech S będzie zbiorem wszystkich podzbiorów A. Definiujemy w S relację równoważności r: X r Y wttw., gdy X\cap\{2,4,5\} = Y \cap \{2,4,5\}Czy następujące stwierdzenia są prawdziwe?   
  Klasa abstrakcji [\emptyset ]_{r} zawiera 1 element
  Klasa abstrakcji [A]_{r} zawiera 4 elementy
  Klasa abstrakcji [{1,2}] zawiera 2 elementy
  13     Liczba funkcji przekształcających zbiór {1,2,3,4,5} na zbiór {0, 1} jest równa   
  2^{5 }
  5^{2 }
  10
  14     Rozważmy ciągi bitów zerojedynkowych o długości 10. Czy następujące stwierdzenia są prawdziwe?   
  Ciągów, które zawierają co najmniej 3 zera jest 2^{7 }
  Ciągów, które zawierają dokładnie 4 zera jest 210
  Liczba wszystkich takich ciągów jest równa 2^{10 }
  15     Załóżmy, że mamy dziesięć książek, wśród nich pięć powieści, trzy matematyczne, dwie historyczne. Uznając za równoważne książki danego typu,dziesięć książek w jednym rzędzie można ułożyć na tyle sposobów   
  {{10!}\over{5!3!2!}}
  C_{10}^5 .C_5^3 .C_2^2
  10!
  16     Załóżmy, ze mamy dziesięć książek, wśród nich cztery powieści, trzy matematyczne i trzy historyczne. Liczba sposobów ułożenia dziesięciu książek w jednym rzędzie tak, że powieści są na początku, następnie książki matematyczne a na końcu książki historyczne jest równa   
  C_{10}^4 + C_6^3 + C_3^3
  3!.3!.4!
  4! + 2.3!
  17     Rzucono dwiema kostkami symetrycznymi.   
  Prawdopodobieństwo tego, że szóstka nie wypada jednocześnie na obu kostkach wynosi 25/36
  Prawdopodobieństwo tego, że na pierwszej kostce wypada więcej oczek niż na drugiej jest równe 15/36
  Prawdopodobieństwo tego, że suma oczek na obu kostkach jest większa niż 4, wynosi 2/3
  18     W urnie są 4 białe i 3 czerwone kule. Losowo wybrano 3 kule   
  Prawdopodobieństwo tego, że kule są tego samego koloru, jest większe niż 1/100
  Prawdopodobieństwo tego, że wśród wylosowanych są 2 kule białe i 1 kula czerwona, jest większe niż 1/100
  Prawdopodobieństwo tego, że wśród wylosowanych liczba czerwonych kul jest większa niż liczba białych, jest mniejsze niż 1/100
  19     Rzucono symetryczną monetą.   
  Prawdopodobieństwo tego, że orzeł wypada za pierwszym razem, wynosi 1/3
  Prawdopodobieństwo tego, że orzeł wypada co najmniej po trzech rzutach,wynosi 1/4
  Prawdopodobieństwo tego, że orzeł wypada w pierwszym i w trzecim rzucie,wynosi 1/8
  20     Dla dowolnych ziorów A,B,C zachodzi  
  (A\oplus B)\oplus B = A
  (A\oplus B)\oplus C=A\oplus(B\oplus C)
  (A\oplus B)\oplus C=(A\oplus C)\oplus B

Powrót