How to write a shell script

Introduction

A shell is a command line interpretor. It takes commands and executes them. As such, it
implements a programming language. The Bourne shell is used to create shell scripts -- ie.
programs that are interpreted/executed by the shell. You can write shell scripts with the C-
shell; however, this is not covered here.

Creating a Script

Suppose you often type the command
find . -name file -print
and you'd rather type a simple command, say
sfind file
Create a shell script
% cd ~/bin
% emacs sfind
% page sfind
find . -name $1 -print
% chmod a+x sfind
% rehash
% cd /usr/local/bin
% sfind tcsh
Ishells/tcsh

Observations

This quick example is far from adequate but some observations:

Shell scripts are simple text files created with an editor.
Shell scripts are marked as executeable
%chmod a+x sfind
Should be located in your search path and ~/bin should be in your search path.
You likely need to rehash if you're a Csh (tcsh) user (but not again when you login).
Arguments are passed from the command line and referenced. For example, as $1.

STk ®NME

#!/bin/sh

All Bourne Shell scripts should begin with the sequence

#!/bin/sh
From the man page for exec(2):

"On the first line of an interpreter script, following the "#!", is the name of a program
which should be used to interpret the contents of the file. For instance, if the first line
contains "#! /bin/sh", then the con- tents of the file are executed as a shell script."
You can get away without this, but you shouldn't. All good scripts state the interpretor
explicitly. Long ago there was just one (the Bourne Shell) but these days there are

many interpretors -- Csh, Ksh, Bash, and others.

Comments

Comments are any text beginning with the pound (#) sign. A comment can start anywhere on
a line and continue until the end of the line.

Search Path

All shell scripts should include a search path specifica- tion:
PATH=/usr/ucb:/usr/bin:/bin; export PATH

A PATH specification is recommended -- often times a script will fail for some people
because they have a different or incomplete search path.

The Bourne Shell does not export environment variables to children unless explicitly

instructed to do so by using the export command.

Argument Checking

A good shell script should verify that the arguments sup- plied (if any) are correct.
if [$# -ne 3]; then
echo 1>&2 Usage: $0 19 Oct 91
exit 127
fi
This script requires three arguments and gripes accordingly.

Exit status

All Unix utilities should return an exit status.
is the year out of range for me?

if [$year -It 1901 -0 $year -gt 2099 |; then

echo 1>&2 Year \"$year\" out of range
exit 127
fi

etc...
All done, exit ok

exit 0
A non-zero exit status indicates an error condition of some sort while a zero exit status
indicates things worked as expected.

On BSD systems there's been an attempt to categorize some of the more common

exit status codes. See /usr/include/sysexits.h.

Using exit status

Exit codes are important for those who use your code. Many constructs test on the exit status
of a command.

The conditional construct is:
if command; then
command
fi
For example,
if tty -s; then
echo Enter text end with \"D
fi
Your code should be written with the expectation that others will use it. Making sure you
return a meaningful exit status will help.

Stdin, Stdout, Stderr

Standard input, output, and error are file descriptors 0, 1, and 2. Each has a particular role and
should be used accordingly:

is the year out of range for me?

if [$year -It 1901 -0 $year -gt 2099]; then
echo 1>&2 Year \"$year\" out of my range
exit 127

fi

etc...
ok, you have the number of days since Jan 1, ...

case “expr $days % 7" in
0)

echo Mon;;
1)

echo Tue;;

etc...
Error messages should appear on stderr not on stdout! Output should appear on stdout. As for
input/output dialogue:

give the fellow a chance to quit

if tty -s ; then
echo This will remove all files in $* since ...
echo $n Ok to procede? $c; read ans
case "$ans" in
n*|N*)
echo File purge abandoned;
exit0 ;;
esac
RM="rm -rfi"
else
RM="rm -rf"
fi
Note: this code behaves differently if there's a user to communicate with (ie. if the standard
input is a tty rather than a pipe, or file, or etc. See tty(1)).

Language Constructs

For loop iteration
Substitute values for variable and perform task:
for variable in word ...
do
command

done
For example:
foriin “cat $LOGS’

do
mv $i $i.$TODAY
cp /dev/null $i
chmod 664 $i
done

Alternatively you may see:
for variable in word ...; do command; done

Case
Switch to statements depending on pattern match

case word in
[pattern [| pattern ...])
command ;;] ...

esac
For example:

case "$year" in

[0-9][0-9])
year=19%{year}
years="expr $year - 1901
[0-9][0-9][0-9][0-9])
years="expr $year - 1901
")
echo 1>&2 Year \"$year\" out of range ...
exit 127

esac

Conditional Execution
Test exit status of command and branch

if command
then
command

[else

command]
fi

For example:

if [$# -ne 3]; then
echo 1>&2 Usage: $0 19 Oct 91
exit 127

fi

Alternatively you may see:
if command; then command; [else command;] fi

While/Until Iteration
Repeat task while command returns good exit status.

{while | until} command
do
command

done
For example:

for each argument mentioned, purge that directory

while [$# -ge 1]; do
_purge $1
shift

done
Alternatively you may see:
while command; do command; done

Variables

Variables are sequences of letters, digits, or underscores beginning with a
letter or underscore. To get the contents of a variable you must prepend the

name with a $.

Numeric variables (eg. like $1, etc.) are positional vari- ables for argument

communication.
o Variable Assignment
Assign a value to a variable by variable=value. For example:

PATH=/usr/ucb:/usr/bin:/bin; export PATH
or
TODAY="(set \'date\"; echo $1)’
o Exporting Variables

Variables are not exported to children unless explicitly marked.

We MUST have a DISPLAY environment variable

if ["$DISPLAY" =" 1]; then

if tty -s ; then
echo "DISPLAY (‘hostname™:0.0)? \c";
read DISPLAY

fi

if ["$DISPLAY" ="]; then
DISPLAY="hostname™:0.0

fi

export DISPLAY
fi

Likewise, for variables like the PRINTER which you want hon- ored by lpr(1).
From a user's .profile:

PRINTER=PostScript; export PRINTER
Note: that the Cshell exports all environment variables.

o Referencing Variables
Use $variable (or, if necessary, ${variable}) to reference the value.

Most user's have a /bin of their own

if ["SUSER" !="root"]; then
PATH=$HOME/bin:$PATH
else
PATH=/etc:/usr/etc:3PATH
fi

The braces are required for concatenation constructs.
$p_01

The value of the variable "p_01".

${p}_01

The value of the variable "p" with "_01" pasted onto the end.

Conditional Reference
${variable-word}

If the variable has been set, use it's value, else use word.

POSTSCRIPT=${POSTSCRIPT-PostScript};
export POSTSCRIPT

${variable:-word}

If the variable has been set and is not null, use it's value, else use word.

These are useful constructions for honoring the user envi- ronment. le.
the user of the script can override variable assignments. Cf. programs
like Ipr(1) honor the PRINTER environment variable, you can do the

same trick with your shell scripts.

${variable:?word}

If variable is set use it's value, else print out word and exit. Useful for bailing
out.

Arguments

Command line arguments to shell scripts are positional vari- ables:

$0, $1, ...

The command and arguments. With $0 the command and the rest the
arguments.

$#
The number of arguments.
$, 3@

All the arguments as a blank separated string. Watch out for "$*" vs. "$@".
And, some commands:

shift

Shift the postional variables down one and decrement number of arguments.
setarg arg ...

Set the positional variables to the argument list.

Command line parsing uses shift:

parse argument list

while [$# -ge 1]; do
case $1in
process arguments...
esac
shift

done
A use of the set command:

figure out what day it is

TODAY="(set \'date\"; echo $1)°

cd $SPOOL

foriin ‘cat $LOGS’

do
mv $i $i.$TODAY
cp /dev/null $i
chmod 664 $i

done

Special Variables
$$

Current process id. This is very useful for constructing temporary files.

tmp=/tmp/cal0$$

trap "rm -f $tmp /tmp/cal1$$ /tmp/cal2$$"
trap exit12 13 15

Jusr/lib/calprog >$tmp

$?
The exit status of the last command.

$command

Run target file if no errors and ...

if[$? -eq 0]
then
etc...
fi
« Quotes/Special Characters
Special characters to terminate words:
; & () | * <> new-line space tab
These are for command sequences, background jobs, etc. To quote any of these use a

backslash (\) or bracket with quote marks (" or ").

Single Quotes

Within single quotes all characters are quoted -- including the backslash. The

result is one word.

grep :${gid}: /etc/group | awk -F: {print $1}'

Double Quotes

Within double quotes you have variable subsitution (ie. the dollar sign is
interpreted) but no file name generation (ie. * and ? are quoted). The result is

one word.

if [! "${parent}"]; then
parent=${people}/${group}/${user}
fi

Back Quotes

Back quotes mean run the command and substitute the output.

if ["echo -n™" ="-n"]; then

="

c="\c"
else

n="'n"

and
TODAY="(set \'date\'; echo $1)’

Functions
Functions are a powerful feature that aren't used often enough. Syntax is

name ()

{

commands

}

For example:

Purge a directory

_purge()
{
there had better be a directory

if [1-d $1]; then
echo $1: No such directory 1>&2
return

fi

etc...

}

Within a function the positional parmeters $0, $1, etc. are the arguments to the
function (not the arguments to the script).

Within a function use return instead of exit.

Functions are good for encapsulations. You can pipe, redi- rect input, etc. to

functions. For example:

deal with a file, add people one at a time
do_file()
{

while parse_one

etc...

etc...
take standard input (or a specified file) and do it.

if ["$1" 1=""1; then
cat $1 | do_file
else
do_file

fi
« Sourcing commands

You can execute shell scripts from within shell scripts. A couple of choices:
sh command

This runs the shell script as a separate shell. For example, on Sun machines

in /etc/rc:

sh /etc/rc.local

. command
This runs the shell script from within the current shell script. For example:

Read in configuration information

. letc/hostconfig

What are the virtues of each? What's the difference? The second form is useful for
configuration files where environment variable are set for the script. For example:

for HOST in $HOSTS; do
is there a config file for this host?

if [-r ${BACKUPHOME}/${HOST} J; then
. ${BACKUPHOME}/${HOST}
fi

etc...

Using configuration files in this manner makes it possible to write scripts that are
automatically tailored for differ- ent situations.

Some Tricks
o« Test

The most powerful command is test(1).

if test expression; then

etc...
and (note the matching bracket argument)

if [expression]; then

etc...

On System V machines this is a builtin (check out the com- mand /bin/test).

On BSD systems (like the Suns) compare the command /usr/bin/test with
[usr/bin/[.

Useful expressions are:

test { -w, -r, -x, -s, ... } filename

is file writeable, readable, executeable, empty, etc?
testn1{-eq, -ne, -gt, ... } n2

are numbers equal, not equal, greater than, etc.?
tests1{=,1=}s2

Are strings the same or different?

test cond1 { -0, -a } cond2

Binary or; binary and; use ! for unary negation.
For example

if [$year -It 1901 -0 $year -gt 2099]; then
echo 1>&2 Year \"$year\" out of range
exit 127

fi

Learn this command inside out! It does a lot for you.

String matching

The test command provides limited string matching tests. A more powerful

trick is to match strings with the case switch.

parse argument list

while [$# -ge 1]; do
case $1in
-c*) rate="echo $1 | cut -c3-';;
-c) shift; rate=$1;;
-p*) prefix="echo $1 | cut -c3-';;
-p) shift; prefix=$1 ;;
-*) echo $Usage; exit 1 ;;
) disks=$; break ;;

done
Of course getopt would work much better.

SysV vs BSD echo
On BSD systems to get a prompt you'd say:

echo -n Ok to procede?; read ans
On SysV systems you'd say:
echo Ok to procede? \c; read ans
In an effort to produce portable code we've been using:

figure out what kind of echo to use

if ["echo -n""="-n"]; then
r.]:llll; C:"\C"
else

=l|_nll; c=
fi

etc...

echo $n Ok to procede? $c; read ans
+ Isthere a person?

The Unix tradition is that programs should execute as qui- etly as possible.

Especially for pipelines, cron jobs, etc.
User prompts aren't required if there's no user.

If there's a person out there, prod him a bit.

if tty -s; then
echo Enter text end with \AD

fi
The tradition also extends to output.

If the output is to a terminal, be verbose

if tty -s <&1; then
verbose=true
else
verbose=false
fi

Beware: just because stdin is a tty that doesn't mean that stdout is too. User prompts

should be directed to the user terminal.

If there's a person out there, prod him a bit.

if tty -s; then
echo Enter text end with *D >&0
fi

Have you ever had a program stop waiting for keyboard input when the output is
directed elsewhere?

« Creating Input

We're familiar with redirecting input. For example:

take standard input (or a specified file) and do it.

if ["$1" 1=""1; then
cat $1 | do_file
else
do_file
fi

alternatively, redirection from a file:

take standard input (or a specified file) and do it.

if ["$1" 1=""1; then
do_file < $1
else
do_file
fi

You can also construct files on the fly.

rmail bsmtp <

rcpt to:

data

from: <$1@newshost.uwo.ca>
to:

Subject: Signon $2

subscribe $2 Usenet Feeder at UWO

quit
EOF

Note: that variables are expanded in the input.

« String Manipulations
One of the more common things you'll need to do is parse strings. Some tricks

TIME="date | cut -c12-19°

TIME="date | sed 's/.* .* .*\(.:*\) .* *A1/"

TIME="date | awk {print $4}"
TIME="set \'date\’; echo $4°

TIME="date | (read u v w x y z; echo $x)
With some care, redefining the input field separators can help.

#!/bin/sh

convert IP number to in-addr.arpa name

name()
{ set'IFS=".";echo $1°
echo $4.$3.$2.%$1.in-addr.arpa

if [$# -ne 1]; then
echo 1>&2 Usage: bynum IP-address
exit 127

fi

add="name $1°
nslookup < < EOF | grep "$add" | sed 's/.*= /I
set type=any

$add
EOF

Debugging

The shell has a number of flags that make debugging easier:

sh -n command

Read the shell script but don't execute the commands. IE. check syntax.

sh -x command

Display commands and arguments as they're executed. In a lot of my shell

scripts you'll see

Uncomment the next line for testing

set -x

