
'
&

$
%

Shell Programming 1

Louise Dennis – 1 – Dept. Computer Science and IT

'
&

$
%

By the end of this lecture you should...

� Know what a shell program is

� Be able to run a shell program

� Be able to write simple shell programs

Louise Dennis – 2 – Dept. Computer Science and IT

'
&

$
%

Overview

� What are shell scripts?

� Creating and running shell scripts.

� Using Variables.

� The .profile file.

� Input and Output.

You can download all the sample programs from in this lecture from the course home

page.

Louise Dennis – 3 – Dept. Computer Science and IT

'
&

$
%

UNIX Command Line

� In UNIX you type commands at the keyboard and the system responds.

� Every operating system has some sort of command interface.

� In UNIX this is a separate program. Shells are different versions of this program.

� Originally there were two shells, sh and csh.

� sh (by Bourne) was best for programming – writing shell scripts which executed a

sequence of commands.

� csh (by Joy) was best for interactive work

� bash (Bourne again shell) incorporates combines aspects of both and is a successor

of sh.

Louise Dennis – 4 – Dept. Computer Science and IT

'
&

$
%

What is a Shell Script

� The shell is a command interpreter – it read commands and then executes them.

� It can work interactively or from a text file.

� A shell program is simply a text file which contains commands you would normally

type at the prompt.

� Major differences between shell scripts and other files:

– First line is usually

#!/usr/bin/sh

– NB. # is also used for comments.

– It is normally executable.

� MOST IMPORTANT: A shell script is some “glue” with which you stick together

other program.

Louise Dennis – 5 – Dept. Computer Science and IT

'
&

$
%

Why use Shell?

� It is always there!!

� Anything you can type in a shell script you can type at the command line.

� Lots of legacy code is written in Shell.

� Its concepts underpin many other scripting languages

� Lots of UNIX applications make more sense if you know a bit of Shell.

Louise Dennis – 6 – Dept. Computer Science and IT

'
&

$
%

Using a Shell Script

� Create the text file.

� Make it executable (optional): chmod u+x filename

� Run it

– sh filename

– filename – only works if file is executable and your PATH is set correctly.

Louise Dennis – 7 – Dept. Computer Science and IT

'
&

$
%

A Simple Shell Script

#!/usr/bin/sh

ls

echo "done"

Each command appears on a separate line.

Louise Dennis – 8 – Dept. Computer Science and IT

'
&

$
%

The Simple Shell Script in Action

[lad@bartok examples]$ ls

done.sh

[lad@bartok examples]$ chmod u+x done.sh

[lad@bartok examples]$ done.sh

done.sh

done

[lad@bartok examples]$ sh done.sh

done.sh

done

[lad@bartok examples]$

Louise Dennis – 9 – Dept. Computer Science and IT

'
&

$
%

Quick Quiz

Shell commands are the same as UNIX commands so:

1. Write a shell script to print a file called shell1.pdf

2. Write a shell script to change the name of a file called shell1.pdf to a file called

simple shell.pdf

3. Write a shell script to list the files a directory and redirect the output to a file

ls.txt

4. Write a shell script to make the file, done.sh executable.

Answers handed to me at the end of the lecture with your name and CS login on them

will be eligable for the course prize.

Answers to the quiz will go up on the website after the lecture.

Louise Dennis – 10 – Dept. Computer Science and IT

'
&

$
%

Some Fundamentals of Programming (Revision)

� Assignment – giving a variable a value

� Input and Output.

� Conditionals – if-then-else and case

� Loops – for, while and do

For small programs things like objects classes and methods get in the way. Shell should

only be used for small programs.

Louise Dennis – 11 – Dept. Computer Science and IT

'
&

$
%

Variables and Assignment

� Assigned by = – there must be NO SPACES round the = symbol.

TMP FILE=/tmp/junk

� Called by $VarName

lpr $TMP FILE

� To set the variable so its available to other shell scripts and at the command line –

i.e. make it an Environment Variable use export:

export TMP FILE

Louise Dennis – 12 – Dept. Computer Science and IT

'
&

$
%

Your .profile is a shell script

set up personal bin directorys

PATH=$HOME/bin:$PATH:

EDITOR=emacs

LASER=het

export PATH TERM EDITOR LASER

DEFTERM=vt100

ASKTERM=false

Louise Dennis – 13 – Dept. Computer Science and IT

'
&

$
%

Some Details

� If you want to use whitespace then use "

MESSAGE="Program ends OK"

� If you actually need a $ sign use n$

echo "A meal in USA costs n$"

� Similarly you can us n instead of quotes

MESSAGE=Programn endsn OK

Louise Dennis – 14 – Dept. Computer Science and IT

'
&

$
%

Input and Output

� The first argument to a shell script is called $1.

� The second argument to a shell script is called $2.

� ... and so on.

� Shell uses echo like Java’s println

Louise Dennis – 15 – Dept. Computer Science and IT

'
&

$
%

Input and Output: An Example

#!/usr/bin/sh

echo $1

[lad@bartok bin]$ simple.sh hello

hello

Louise Dennis – 16 – Dept. Computer Science and IT

'
&

$
%

Special Input Variables

� $# Records the number of arguments passed to the shell, not counting the first

command.

– simple.sh a b c sets $# to 3.

– One of its primary uses is to check that enough arguments have been specified

� $* All the arguments given to the shell

– Useful in loops when you want to do something to every input.

Louise Dennis – 17 – Dept. Computer Science and IT

'
&

$
%

More Simple Shell Programs

#!/usr/bin/sh

echo $#

[lad@bartok examples]$ count_input.sh

0

[lad@bartok examples]$ sh count_input.sh hello goodbye hello

3

[lad@bartok examples]$ sh count_input.sh hello goodbye hello pink

4

Louise Dennis – 18 – Dept. Computer Science and IT

'
&

$
%

Sequences of Commands

� Commands are generally terminated by end-of-line.

� Several commands can be on one line, separated by semi-colons.

� To spread a command over more than one line, end the first line with an escape n.

� Leading white space (e.g. tabs) is ignored.

� Arguments to commands are separated by white space.

Louise Dennis – 19 – Dept. Computer Science and IT

'
&

$
%

Examples of semi-colons and backlashes

#!/usr/bin/sh

echo $1

echo $2; echo \

$3

[lad@bartok examples]$ sh echo_three.sh red green blue

red

green

blue

Louise Dennis – 20 – Dept. Computer Science and IT

'
&

$
%

Sequences at Work

#!/usr/bin/sh

emacs $1

chmod u+x $1

[lad@bartok examples]$ edit_shell.sh new.sh

[lad@bartok examples]$ ls -lt

total 52

-rwxr--r-- 1 lad staff 8 Nov 26 16:10 new.sh

[lad@bartok examples]$

Louise Dennis – 21 – Dept. Computer Science and IT

'
&

$
%

Quotes

Single Quotes Treat as a string.

Double Quotes evaluate variables

No Quotes evaluate variables and wild cards

Back Quotes treat as a command

Louise Dennis – 22 – Dept. Computer Science and IT

'
&

$
%

Examples

#!/usr/bin/sh

FILE=hello1.java

echo ’ls *.sh $FILE’

echo "ls *.sh $FILE"

echo ls *.sh $FILE

echo ‘ls *.sh $FILE‘

[lad@bartok lad]$ quotes.sh

[lad@bartok examples]$ quotes.sh

ls *.sh $FILE

ls *.sh hello1.java

ls edit_shell.sh list_shell.sh make_executable.sh quotes.sh hello1.java

edit_shell.sh hello1.java list_shell.sh make_executable.sh quotes.sh

Louise Dennis – 23 – Dept. Computer Science and IT

'
&

$
%

Summary

� Variables: $NAME

� Assignment: =

� Input Arguments: $1, $#, $*.

� Output: echo.

� Sequences of commands.

Louise Dennis – 24 – Dept. Computer Science and IT

