
Unix and Shell Programming Basics Strona 1 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

CSE 178

Fall Semester 1995

Unix and Shell Programming Basics
Table of Contents
Introduction and Basic Unix Utilities
    This Document
    Operating System
    Unix
    Unix Utilities
    Using the Unix Mail Facility

Unix Files and the Unix File System
    Unix File Structure

Bourne and C Shell Basics, Redirection, Pipes, Processes
    The Unix Shell
    Information containing variables
    The History Facility and History Substitution
    Command Aliasing
    Files that are used for initialization and termination
    Information about Bourne Shell variables
    Input/output redirection (Bourne and C Shells)
    Pipelines and Processes (Bourne and C Shells)
    Miscellaneous Commands

Shell Programming in the Bourne Shell
    Creating new commands
    Control Structures (for the Bourne Shell)
    While Loops
    Until Loops
    The shift command
    The shell logical operators
    Miscellaneous Examples
    The case statement
    Here Documents
    The shell trap command
    Shell Signal Numbers

Using the Internet

Introduction and Basic Unix Utilities
This Document
In addition to being a set of class notes, these notes also exist as an interactive hypertext 
document. This means there are embedded links to other documents and sites, such as John 
Smith's extensive UNIXhelp for Users. Browsing these links, using a WWW browser, is not only 
fun, but educational! 

Also, don't miss out on using Usenet News and Electronic Mail to help you learn Unix and Shell 
Programming Basics. 



Unix and Shell Programming Basics Strona 2 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Operating System
Definition: A program which acts as an interface between the computer hardware and the user of 
the computer. 

1. Provides an environment in which a user may execute programs. 
2. Controls the resources of a computer and allocates them among the users of the computer. 

Goals: 

1. Make the computer easier to use. 
2. Efficient use of the computer's resources. 

! Manage memory. 
! Manage processes and CPU time and usage. 
! Control peripheral devices (e.g. disks, printers, terminals, modems) 
! Provide a file system that manages the long term storage of information (e.g. 

programs,data,documents). 

Unix
The name Unix refers to a family of computer operating systems (e.g. Ultrix, IBM Unix (AIX), 
AT&T System V UNIX (UNIX=registered trademark of AT&T and USL (Unix Systems Lab)), 
Berkeley Unix). 

Definition: An interactive multiuser operating system. 

History: Developed at AT&T Bell Labs in Murray Hill, New Jersey in 1969 by Ken Thompson. 
Originally written in PDP-7 assembly language. Written in C in 1973. 

Advantages: 

1. Portability - Since most of Unix is written in the language C, it is quite portable; it runs on 
micros to mainframes. This gives Unix a strong commercial advantage. 

2. Easily modified -The source code is available and written in a high level language (C) so 
the system is easy to adapt to different requirements. 

3. Provides a rich and productive environment. 
4. Supports multi-tasking (asynchronous processes). 

General Structure: 

[[graphics - no textual representation.]] 

The kernel controls the resources of the computer and allocates these resources among the users 
of the computer. 

Unix Philosophy: The power of a software system comes as much from the relationships among 
programs as it does from the programs themselves. 

1. On their own many Unix tools perform very simple operations. (Tools philosophy: 
separation of different functions into different programs.) 



Unix and Shell Programming Basics Strona 3 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

2. Simple tools can be easily combined to create powerful, general-purpose tools. 

Unix Utilities
passwd 

As soon as you log in to the Unix system for the first time change your password using this 
command. You will be prompted for all needed information. 

vi 
The standard full-screen editor available under Unix. 

      Using Command mode
      ZZ  - save file and exit 
      :q!  - exit without save 
      :w - write buffer to disk 
      h (left)  j (down)  k (up)  l (right)
      ndw - delete n words (default for n = 1) 
      nx - delete n characters (default for n = 1) 
      ndd - delete n lines (default for n = 1) 
      -  - go to start of previous line 
      ^  - go to first non-blank character of current line 
      O  - go to first column of current line 
      $  - go to end of current line 
      nG - go to nth line of file (default for n = 1) 
      nyy - yank and save n lines 
      p  - put down lines saved 
      
      Using INSERT MODE
      <esc> - exit INSERT mode 
      i  - enter INSERT mode ; insert to left of cursor 
      a  - enter INSERT mode ; insert to right of cursor 
      A  - enter INSERT mode ; add at end of current line 
      o  - enter INSERT mode ; add a new line after current line 
      O  - enter INSERT mode ; add a new line before current line 
      /<pat> - search from cursor down for pattern <pat> 
      ?<pat> - search from cursor up for pattern <pat> 
      n  - go to next occurrence of last pattern indicated 
      N  - go to previous occurrence of last pattern indicated 

[[graphics - no textual representation.]] 

OPTIONAL 

stty
sets I/O options on current output terminal. With no arg, reports terminal speed and settings 
different than defaults. Some options are : 

1. all : print all normally used option settings. 
2. everything : print all information known to stty. 
3. raw : raw mode input ( no input processing (e.g. erase, kill,interrupt ). 
4. -raw : negate the raw mode. 
5. echo : echo back each character typed. 
6. -echo : do not echo characters. 
7. erase c : set erase character to c (default='#'). 
8. kill c : set kill character to c (default='@'). 
9. intr c : set interrupt character to c (default=ctrl ?). 

10. start c : set start character to c (default=ctrl q). 
11. stop c : set stop character to c (default=ctrl s). 



Unix and Shell Programming Basics Strona 4 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Example: stty eof '^d' erase '^h' kill '^u' intr '^c' 

These are the typical settings. Note the differences from the defaults given. 

control characters 
1. ctrl-w : deletes the current command line word you are typing (word=any sequence of 

non-blank characters). 
2. ctrl-d : end-of-file character. 
3. ctrl-c : interrupts current foreground process (In mail two ctrl-c characters kill the 

mail message and save it in dead.letter). 
4. ctrl-s : suspends output being printed to screen. 
5. ctrl-q : resumes printing of suspended output. 
6. ctrl-r : moves to next line and redraws command line. 
7. ctrl-h : erases character just typed on command line. 

cat 
displays the contents of a text file. This command is actually used to concatenate two or 
more files. Since the output goes by default to the standard output, cat can be used to 
display at the terminal screen the contents of a single file (i.e. a single file with nothing 
concatenated to it). 

1. -e : marks the ends of lines of input files with dollar signs. 
2. -s : suppresses the warning message when cat can't find an input file. 
3. -t : marks each tab in input files with ^I. 
4. -v : cat displays nonprinting characters (other than tabs and newlines) found in input 

files. 
5. -n : prepend line number to output line 

Syntax: cat <file names> 

Examples:

        $ cat prog.c
        $ cat file1 file2 file3
        $ cat -v -t file1

ls 
with no arguments prints a list of the names of the files in the current working directory. 
With directory arguments a list of files in each directory is printed. With a file argument 
that filename is listed. Some options are: 

1. -a : displays all entries including those that begin with a period. 
2. -c : sorts entries by time of last inode modification. 
3. -d : displays directories only. 
4. -F : marks entries in list (directory/ , socket= , symbolic link@ , executable_file*) 
5. -l : lists mode, number of links, owner, size(bytes), time of last modification. Special 

files have size field replaced with major and minor device numbers. (mode first 
character: d=directory, b=block-type special file, c=character type special 
file,l=symbolic link,s=socket,-=plain file) (mode permissions:user-group-other) 

6. -s : displays size (in blocks) of each file (given as first entry) 
7. -r : sorts entries in reverse alphabetic or time order 



Unix and Shell Programming Basics Strona 5 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

8. -i : prints the inode number of each file 
9. -u : sorts by time of last access (read or executed) 

10. -t : sort (Example: Sort by last inode modification time = ls -ctl) 
11. -1 : print in a single column (Examples: ls -1 or ls -ct1) 

Syntax: ls <file names> 

Examples:

 $ ls -l draw 
 -rwx------  1 jpl   24576 Oct 18 12:45 draw 
   permissions = -rwx------ 
   number of links = 1 
 meaning -> owner userid = jpl 
   size in bytes = 24576 
   date of last modification  = Oct 18 12:45 
   filename = draw 

Three times are recorded and available when using ls. 
1. Inode modification time (c) 
2. File contents modification time. (default) 
3. Access time (u) 

rm 
removes the named files. 

1. -i : ask before removing each file listed (interactive mode). 
2. -r : remove listed directories and all their subdirectories 
3. -f : silently remove files for which one does not have write permissions. 

Syntax: rm <file names> 

Examples:

      $ rm file1 file2
      $ rm prog.c
      $ rm -ri workdir

more 
displays the named files one screenful at a time. 

1. +n : starts displaying first file at line number n 
2. -n : specifies number of lines to display on screen. (The default is obtained from 

variable TERM and info in /etc/termcap. 

Syntax: more <file names> 

Examples:

      $ more file1 file2
      $ more +25 prog.c

rmdir 



Unix and Shell Programming Basics Strona 6 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

removes directories (if empty) 

Syntax: rmdir <directory names> 

Example:

      $ rmdir dir1 dir2 dir3

mkdir 
makes a directory (needs write permission in parent directory) 

Syntax: mkdir <directory name> 

Example:

      $ mkdir artdir

man 
displays pages from the on-line system documentation/manuals. 

Syntax: man <utility name> 

Examples:

      $ man more
      $ man rm
      $ man man

echo 
prints all of its arguments to the terminal screen. 

1. -n : Prevents a newline from being added to the output. (C Shell) 

Syntax: echo <argument list> 

Example:

      $ echo Hello world.
      Hello world.
      $ echo -n Hello world.
      Hello world.$

2. \c : Prevents a newline from being added to the output. (Bourne) 

cp 
makes a copy of a file. Any file can be copied (e.g. text or executable files). Be careful: cp 
may overwrite an existing file without warning. 

1. -p : give the copied file the same modification times and access permissions as the 
source file. 

2. -i : if a file will be overwritten, ask before destroying the old contents. 



Unix and Shell Programming Basics Strona 7 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

3. -r : if a source file is a directory, copy it and its contents and all of its subdirectories 
(if any exist) into the directory named as a last argument. 

Syntax: 

      
      cp <source filename> <new filename>
      cp <source file list> <directory>
      

Example:

      $ ls
      file1
      $ cp file1 file2
      $ ls
      file1 file2
      
      $ cp file1 file2 /csarea/csefac/jpl/recdir
      
      $ cp -r dir1 dir2

mv 
renames a file. 

1. -f : move the named files regardless of their access permissions. 
2. -i : ask before overwriting an existing file. 

Syntax: 

      
      mv <old file> <new file>
      mv <file list> <directory>
      

Example:

      $ ls
      file1
      $ mv file1 file2
      $ ls
      file2
      
      $ mv file1 file2 /csarea/csefac/jpl/recdir
      
      $ mv -i file1 file2

date 
displays the current date and time. (OPTIONAL) 

Syntax: 

 
       date 
       date +<format> 
        <format> may contain the following 
        a  abbreviated day (Sun to Sat) 
        d day of the month 
        D date in month/day/year format 



Unix and Shell Programming Basics Strona 8 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

        h abbreviated month (Jan to Dec) 
        H hour (00 to 23) 
        j day of the year (001 to 366) 
        m month of the year (01 to 12) 
        M minutes (00-59) 
        r time in A.M./P.M. notation 
        y last two digits of year (00 to 99) 
        S seconds (00 to 59) 
        T time in hours:minutes:seconds format 
        w day of the week (0 to 7, Sun=0) 
        n newline 
        t tab 
      

Example:

      $ date
      Wed Aug  7 10:44:34 MST 1991
      
      $ date '+%a %t %h %t %y'
      Tue Dec 93 
      
      $ date '+%d%t%D%t%H'
      07 12/07/93  09 
      
      $ date '+%r%n%T'
      09:35:16 AM
      09:35:16

grep 
searches the files named for lines that match the pattern given. The lines that contain the 
given pattern are printed. (grep=Global Regular Expression Print) Some of the options 
available are: 

1. -v : all lines except those matched are printed. 
2. -i : ignore uppercase/lowercase distinctions in matching. 
3. -c : only a count of matching lines is printed. 
4. -l : only the names of files with matching lines is printed. (Each filename is printed 

once and separated with a newline.) 
5. -n : each line is preceded by its relative line number in the file. 

Syntax: grep [-vicln] <pattern> <file names> 

Example:

      $ cat file1
      azz
      bzz
      czz
      dzz
      $ grep azz file1
      azz
      $ grep -v azz file1
      bzz
      czz
      dzz

head 
prints a portion of the beginning of a file. 



Unix and Shell Programming Basics Strona 9 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Syntax: head [-number] 

Examples:

      $ head file1      # prints default of first 10 lines
      $ head -2 file1   # prints first two lines of file1

tail 
prints a portion of the end of a file. 

1. + : display blocks,characters, or lines from start 
2. -b : count by blocks 
3. -c : count by characters 
4. -l : count by lines (default) 
5. -f : copy last line and enter infinite loop; wait and print added lines if file grows 
6. -r : print lines in reverse order 

Syntax: tail [-|+ [number] options] [file] 

      $ tail -8c file1   # prints last 8 characters 
                        # newline is invisible 
      $ tail +8 file1   # prints file starting at line 8 
      
      $ make accts > accts.out &
      $ tail -f accts.out

The above example allows you to save the output of make while you watch its output on the 
screen. If need be one can break out of the tail and do something else in the foreground. 

sort 
sorts lines of all named input files and then writes the sorted result to the standard output by 
default. (standard input = default input when no input files are named) (default sort key = 
entire line) (if filename = "-" it is stdin) 

1. -r : order items in decreasing order 
2. -u : omit all but one duplicate lines 
3. -c : only produce output if files named are not sorted 

Syntax: sort [-o outfile] [-rcu] <file list> 

There are many other options. For example, a file can be sorted on arbitrary keys. NOTE: 
Defaulting to the standard input is seen in many Unix tools. Most/many Unix tools also 
send their output to the standard output by default. 

Examples:

      $ sort -o info.out myinfo
      $ sort -u myinfo  # sort and discard equal lines

uniq 
prints a file skipping adjacent duplicate lines. The default input is stdin and the default 
output is stdout. Initial fields and characters can be skipped in the comparisons but these 



Unix and Shell Programming Basics Strona 10 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

features are not covered here. 
1. -c precede each line with #occurrences 
2. -d print only lines that are repeated 
3. -u print only lines that are not repeated 

Syntax: uniq [options] [input file] [output file] 

Examples:

      $ uniq file1 file1  #Oops, you lost contents of file1.
      $ cat file2
      a
      a
      b
      c
      c
      c
      $ uniq file2
      a
      b
      c
      $ uniq -c file2
      2 a
      1 b
      3 c
      $ uniq -u file2
      b

diff 
tells what actions need to be taken in order to convert the first file named into the second 
file. If one of the files is "-" then it is the stdin. The "<" names lines from the first file and 
the ">" lines from the second file. Numbers before a letter command refer to first file lines 
while numbers after refer to second file lines. (a=add, d=delete, c=change) 

1. -b trailing spaces and tabs are ignored 
2. -e produces a script of commands for line editor "ed" that will produce file2 from 

file1 

Syntax: diff [-eb] <file1> <file2> 

      (NOTE: diff used without -e does not produce editor script format.)
      status codes: 
         0=identical files
         1=different files
         2=error condition
      
      format explained:
      
        n1 a n3 - add line n3 (file2) after line n1 (file1)      
        n1 a n3,n4 - add lines n3 to n4 from file2 after
                     line n1 in file1
        n1,n2 d n3 - delete lines n1 to n2 from file1. (To
                     make file2->file1 add n1 to n2 of file1
                     after line n3 in file2.)
        n1,n2 c n3,n4 - change lines n1 to n2 of file1 to
                        lines n3 to n4 of file2

Example:

      $ cat f1



Unix and Shell Programming Basics Strona 11 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

      a
      b
      c
      $ cat f2
      a
      c
      c
      $ diff f1 f2
      2c2 # change line 2 of file1 into line 2 of file2
      <b
      ---
      >c
      $ diff -e f1 f2
      2c
      c
      .

NOTE: Keeping an original file and a chain of version to version scripts made by diff could 
be the basis of a version control system. 

cmp 
compare two files. Makes no comment if files are identical. If different only gives byte and 
line number at which the first difference occurred. 

who 
prints a list of the users currently logged in. Information given is user name, terminal that 
user is using, date and time that user logged in. 

Example:

      $ who
      jpl   ttyp4   Aug 12 09::40 (fremont.cse.nau.)

who am i : gives "who" info for yourself. 

wc 
counts words, lines, and characters. 

1. -c : display the number of characters in the input file(s) 
2. -l : display the number of lines in the input file(s) 
3. -w : display the number of words in the input file(s) 

Examples:

 $ wc -l t1 t2 
 4 t1 
 3 t2 
 7 total 
 $ wc -lc t1 t2 
 4 20 t1 
 3 15 t2 
 7 35 total 

Using the Unix Mail Facility.



Unix and Shell Programming Basics Strona 12 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

The mail utility (mail) allows you to send and receive electronic mail (email). A mail message has 
two parts, a header and a body. A header is composed of four parts as shown below. 

 [[graphics - no textual representation.]] 

Command Line Options of the Mail Facility

mail    Read any mail residing in your system mailbox. 
mail -f <filename> Read any mail residing in file <filename> . 
mail -f   Read any mail residing in the file ~/mbox. 
mail -v <address list> Create a mail message and send it to the given 
   addresses and watch each one being delivered. 
mail -s <text> <address list> Send mail to the given addresses using 
    <text> for the subject line.  
mail <pathname> Create a mail message in a file given by <pathname> 
  The <pathname> must have a slash (/) within it. 
mail '|<cmd>' Create a mail message and send it to the process 
  created when command <cmd> is executed. Since <cmd> 
  may not contain spaces, an alias in .mailrc may have to 
  be used. 

Other Useful Commands Related to the Mail Facility

from  Print a summary of all the mail in your system mailbox.  
biff y  Give notice of new mail and print a summary of its message.  

A Summary of Commands Available When Reading Mail

h(eaders)  Display the headers of pending messages. 
+ , n(ext)  Display the next message. 
-   Display the previous message. 
e(dit)  <msg#> Edit message specified. The current message is the default. 
q(uit)   Exit the mail program retaining all changes made. 
x   Exit the mail program. Do not retain any changes. 
w(rite) <file> Write the body of the current message to <file>. 
s(ave) <file> Write header and body of the current message to <file>. 
<number>  Display the message whose number is specified.  
d(elete) <msg#> Delete the message specified. Current message = default.
u(delete) <msg#> Restore the message specified. Current message=default.
dp   Delete the current message and display the next message.
m <userid>  Create a new mail message and send it to <userid> . 

As indicated above, commands can be applied to a default message, which is usually the current 



Unix and Shell Programming Basics Strona 13 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

message, and commands can be applied to a specified message. It is also possible to specify a list 
of messages using the notation given below. 

Individual Message and Message List Notation

.   The current message. 
<number>  The message number specified. 
n-m   The list of messages from message #n to message #m 
^   The first message pending. 
$   The last message pending. 
*   All messages pending. 
<userid>  All messages sent by <userid> . 
/<pattern> All messages with <pattern> in the subject line. 
:n   All new messages pending. 
:r   All messages already read. 
:u   All messages not yet read. 

Examples:

  p 2-4  Print messages 2, 3 and 4. 
  w * temp Write messages 2 through 4 to file temp. 
  e ^  Edit the first message pending. 

Whenever the mail facility is executed it in turn executes the .mailrc file if it exists. Special 
variables can be set and aliases can be defined in the .mailrc file. An alias is a name given to a 
command or list of commands. These can be useful when using the command line option that 
allows mail messages to be sent to commands. Special variables can be used to adjust the 
behavior of the mail facility. Given below are a few of the variables that can be used to set up the 
mail facility 

Mail Facility Variables

ask   Prompt for the subject line. 
askcc   Prompt for the copy line. 
crt=<number> Set the number of lines to be viewed per screen for long 
   messages. 

The Information in a message header. 

  The <userid> of the sender of the message. 
  The date and time that the message was received . 
  The size of the message. 
  As much of the subject line as will fit into the header. 

Examples: 

 jpl@pine.cse.nau.edu Jan  6  11:52  (121 li) ACM Lecture Visit 



Unix and Shell Programming Basics Strona 14 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Unix Files and the Unix File System
The Unix File Structure
The Unix file system is so important that understanding it is a prerequisite to using Unix well. 

A file system in Unix is an organization of files on a disk. It is basically the collection of the files 
on a disk together with a catalog of the files. This catalog occurs at a fixed location on the disk, is 
called the ilist of the file system, and is composed of a number of entries called inodes. 

A regular file is simply a file that contains a program or data. 

The file system is hierarchical. It organizes files into one large tree structure. This allows users to 
group related files together in a simple way. 

 [[graphics - no textual representation.]] 

Note the following: 

1. All nodes are files (A directory is just a special file.) 
2. There is exactly one root node (/) . 
3. Every node has 0 or more dependents. 
4. Every node has one parent except the root (/) node. 

Because the file system is hierarchical, files can have the same name with no conflict if they are 
located in different directories. 

Compatibility of file, device, and interprocess I/O (output serves as input to another program) is 
an example of how an abstract concept can identify common aspects of diverse software 
components. 

 [[graphics - no textual representation.]] 

Unix does not distinguish between these three possible data sources and three possible 
destinations. A user can specify, using the same command syntax for naming files, devices, and 
processes, at execution time which of each to use for I/O. In general, a file is defined as simply a 
sequence of bytes. 

1. No structure is imposed on a file by the system. 
2. No meaning is attached to the contents of a file. A program using a file determines the 

meaning of that file. 

Every Unix file has the following information associated with it : 

1. A position in the file hierarchy. 
2. A file name. 
3. A file size. 
4. The blocks that contain a file's data. 
5. A set of permissions. 
6. Last modification, access, and inode change times. For example, the command find affects 



Unix and Shell Programming Basics Strona 15 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

access time while the command chmod affects inode change time. 
7. Other administrative and system information. 

An inode defines a file. Remember that an inode is an entry in the ilist of a file system which is 
itself the catalog of files that exist on that disk. 

1. An inode number is the system's internal name for a file. (i-number) 
2. Inode number of file = number of inode holding file's information. 

Example: ls -i file1 ---> 38541 file1 
3. The first part of each directory entry (the inode number of a file) is the only connection 

between the name of a file and its contents. 
4. A filename is called a "link" because it links a name in the directory hierarchy to an inode 

and in this way connects that name to all the information the file represents. 
5. An inode contains the following information: 

! Whether the file is a directory, Unix special file, or Unix ordinary file. 
! What physical device the file resides on. 
! Who owns the file. 
! Who can access the file. 
! If the file resides on a disk, what blocks on the disk constitute the file and in what 

order. 

Directories are files that have a special format. 

1. Each entry defines a file. (It begins with the file's inode number.) 
2. The first entry of every directory is the file dot ("."). This represents the entry for the 

directory itself. This entry allows a directory to be accessed without knowing its complete 
(absolute) pathname. (e.g. in a shell script you can give a relative pathname: ls -d . ) 

3. The second entry of every directory is file dot-dot (".."). This is the entry for the parent of 
the directory. 

4. You may examine directory and regular file formats using the "od" command. (octal dump) 
! -c option interprets bytes as characters 
! -cb option also gives octal numbers 

    $ cat file1 
    Hello  
    T 
    $od -cb file1 
    0000000     H   e   l   l   o   \n   T   \n 
             110 145 154 154 157 012  124 012 
   

OPTIONAL

Brief sketch of file system layout : 

" Block 0 : This first block is the boot block. It contains a short bootstrap program. This may 
read in a larger bootstrap program or it may read in the Unix system kernel itself. This is 
very system dependent. For a system not using bootstrapping this block is usually not used. 

" Block 1 : This second block is the file system header (the super block) This block contains 
the file system size, the number of inodes used, and information about the free blocks list. 

1. When a file system is mounted an entry is made in the Unix kernel's mount table and that 
file system's super block is read into a large internal buffer. 

2. The super blocks of all the mounted file systems are accessible to the kernel which needs 



Unix and Shell Programming Basics Strona 16 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

the information to access files and inodes in a file system. 

" Block 2 : This third block begins the ilist (file system inode list). Inodes are fixed in size 
and numbered consecutively from 0. Since the beginning of the ilist is fixed any inode can 
be located given its number. 

Try df -i. (df = disk free information; -i is the inode option.) 

OPTIONAL

Layout of a Unix file system on a device. [[graphics - no textual representation.]] 

Some directories to be familiar with : 

1. /usr/bin : (binaries) standard Unix utility programs are found here (e.g. who,write,rm) Prior 
to System V Rlease 4, /bin contained some of these utilities. 

2. /dev : (devices) special files called device files are found here (all files representing 
peripheral devices). 

3. /etc : (et cetera) contains administrative files and tables (e.g. passwd which contains all the 
login information about each user. 

4. /lib : (libraries) libraries of subroutines for programmers using high level languages like C 
and other special purpose programming libraries. 

5. /tmp : used for temporary files made during program execution 
6. /src : sometimes holds full/partial set of Unix C language source code listings. (/usr/src may 

also hold such files) 
7. /usr : will find many subdirectories here including bin , lib, and src. Typically /usr/bin holds 

off-the-shelf software packages (executable modules) that are widely used. 
8. /usr/include : contains header files for C programs. Each of these files contains a ".h" suffix. 
9. /usr/man : contains on-line manual pages for Unix commands, system calls, and library 

functions. 

Some useful terminology : 

1. home directory - directory entered when you log in. 
2. working directory - the directory you are currently working in (also called the current 

directory or the current working directory). 
3. / - the root directory. 
4. pathname - the name of the path from one directory to another file or directory. If the 

pathname begins with the root directory it is called the absolute pathname. (Example: 
rm /csarea/csefac/jpl/project1/file1) Otherwise it is called a relative pathname. (Example:: 
Assume you are in /csarea/csefac/jpl/project2 : rm ../project1/file1) 

5. super-user - Unix system administrator who may read and modify any file in the system no 
matter what the file's permissions are. 

6. login id - the name you log in with. 
7. uid - the internal number that the Unix system actually recognizes a user with. 

Some useful commands : 

1. pwd - print pathname of the working directory. 
2. cd - change to the home directory 
3. cd <directory> - change to the directory named. 

File permissions : Every file (and so every directory also) has a set of permissions associated with 



Unix and Shell Programming Basics Strona 17 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

it. These permissions allow various types of protection to be given to a file/directory. Two forms 
of permissions specifications can be used: 

1. symbolic rwxrwxrwx 3 groups: user,group,others r = read permission granted w = write 
permission granted x = execute permission granted 

2. absolute 3 numbers can represent a file's permissions where r=4, w=2, x=1, and 0 = none 
are set. 

The setting of the permission specification will determine your privacy/protection. Recall that: 

 
        $ ls -l <file names>   # reports file permissions
        $ ls -ld <directory>   # reports directory perms

Examples:

         rw-rw-r--      user and group may read and write 
                        to file, others may only read file
      
         rwxr--r--      user may read, write, and execute
                        file; group and others may only
                        read the file
      Misc info:
      
        4000 - set user ID on execution.
        2000 - set group id on execution.
        1000 - sticky bit (keep in the swap space)
        0400 - read by user granted
        0200 - write by user granted
        0100 - execute by user granted
        etc.

Directory permissions : 

 - A directory can never be executed. 
 - A directory can be read from and written to by all three types of user
  (u=owner , g=group , o=all others) 
 - Read permission allows you to read the entires in a directory. 
 - Write permission allows you to make changes to a directory. 
  (e.g. create, move, copy, remove, etc. files) 
 - Execute permission (x) for a directory has the following semantics: 
  - You can use (e.g. execute) the entries in a directory. 
    You can also cd to directory and check file sizes. 
        Example:
  wx = Allows one to access and modify but not read a directory. 
  (e.g. Can remove a file if you know it is in that directory 
   but you cannot read (ls) the directory.) 

Permissions are set by using the chmod command. 

Syntax: 

      
      chmod [augo]+ optr sym_perm {, optr sym_perm} <files>
      chmod absolute_perm <files>
      
      where: a=all, u=user, g=group. o=other



Unix and Shell Programming Basics Strona 18 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

             optr = ( + | - | = )
             sym_perm = (r | w | x)
      

Examples:

        $ chmod 666 file1   # sets permissions to rw-rw-rw-
        $ chmod a+x file1   # all 3 groups get execute perms
        $ chmod a-w file1   # no write permission for all 
        $ chmod o-w file1   # deny others write permission
        $ chmod g+w,o-r,u+x file1 # write to group, deny
                                  # read to others, exec
                                  # for user
      
        $ chmod go=u file1  # sets groups,others = user
        $ chmod go-rw file1 # takes away read and write
                            # perms from groups and others
        $ chmod a=rw file1  # sets all groups perms to rw
        $ chmod go-rwx file1 #no perms for group and others

Basic information about Unix I/O and I/O devices. 

1. Each process that executes under Unix has: A. a source from which it expects to receive 
input : a standard input. B. two destinations to which it can send output (if any) : standard 
output (normal output) and standard error. 

2. A process may have other files and devices added to this minimal set of three basic I/O 
devices, but when a process first begins execution these three devices come by default: A. 
keyboard (the default standard input device) B. terminal screen (the default standard output 
device) C. terminal screen (the default standard error device) 

3. I/O devices include terminal screens, keyboards, printers, tape drives, disk drives, etc. 
4. A special file is a file that is associated with an I/O device rather than a region on some 

storage medium. By convention, all special files are located in the directory /dev. There 
exists a special file for each I/O device supported by your system. 

5. There are two types of special files (try ls -l /dev) : A. block special file: performs I/O in 
blocks (e.g. 512 or 1024) (perms start with b). B. character special file: performs I/O on a 
character by character basis (perms start with a c). 

6. Each special file has a major and a minor number. A. major device number: encodes the 
type of device. B. minor device number: gives the instance of the device of a certain type. 

When you log in, you get a terminal line and , therefore, a file in /dev through which the 
characters you type and receive are sent. 

Try command "tty". It prints the special filename of the terminal attached to your standard output. 

Bourne and C Shell Basics, Redirection, 
Pipes, Processes
The Unix Shell
The shell is a command language. A command language is a program that interprets your requests 
to run programs. The shell is first invoked as a user's initial process by the login process. We will 
learn many basic features of two different shells commonly used on Unix systems: the C shell and 
the Bourne Shell. 



Unix and Shell Programming Basics Strona 19 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

C Shell - developed at UCB
Bourne Shell - written by S.R. Bourne
(Korn Shell - enhanced Bourne Shell)

The shell is a C program which: 

1. Prompts the user for a command line. 
2. Reads a command line from a file (/dev/tty or Unix system file). 
3. Performs interpretation of a command line. 
4. Sends processed command line to the Unix operating system for execution. (The resulting 

line is executed using system primitives.) 

The shell command line structure : 

1. The simplest command is a single word which usually names a file for execution. 
2. Either the newline or the semicolon terminate a command. 

Examples: 1. date 2. ls; 3. ls;date 

3. In general, a simple shell command is a sequence of non-blank arguments separated by 
blanks or tabs. The first argument (numbered 0) usually specifies the name of the command 
to be executed. Example: lpr f1 f2 f3 

4. If the first argument of a command line is a compiled executable file then the shell spawns a 
process that immediately executes the program. 

5. If the first argument of a command line is executable but is not a compiled file (i.e. it is an 
ascii file), it is assumed to be a shell procedure/script which is a file of ordinary text of shell 
command lines. In this case the shell spawns another shell (sub-shell) to read the file and 
execute the commands in it. 

The shell looks for commands in a specific way. Commands that begin with / , ./ , ../ are simply 
looked for in the directory indicated. 

Examples: 1. /bin/date 2. ../myprog 3. ../mydir/myprog 

Other commands are searched for in each directory listed in the shell variable PATH. The value of 
PATH is a list of directory names which are searched in order (left-to-right). 

We will begin by introducing some basic attributes of the C Shell because this shell has many 
facilities that will be of help to you in your daily work with Unix. (Your login shell is specified 
in /etc/passwd as the C Shell.) After this introduction to the C shell, however, we will concentrate 
on the Bourne Shell since the Bourne Shell is generally the shell of choice when writing shell 
programming. 

The C Shell allows one to create variables (shell variables) that can be used on the current 
command line, in shell programs, and to control properties of the shell. Some C Shell variables 
are used like switches which cause certain properties to be exhibited by the shell if they are 
defined. In other words, defining one of these variables is like turning on the property represented 
by that variable. Some of these variables are given below. 

On/Off switch-type variables. (Turn on/off with set/unset commands.) 



Unix and Shell Programming Basics Strona 20 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

1. ignoreeof If defined forces one to use "logout" command to logout. 
2. noclobber If defined won't allow redirected output to overwrite an existing file. 
3. noglob If defined treats * , ? , [ , ] , ~ as literal characters. 
4. filec If defined enables filename completion using the escape key. 

Another type of C Shell variable is used to contain or hold local information that the user can 
utilize when desired. Some of these variables are given below. 

Information containing variables.
1. history the size of the command/event history list. 
2. cwd the pathname of the current working directory. 
3. home the pathname of your login directory. 
4. prompt the prompt string. To display an event number within a prompt use an exclamation 

point. ( e.g. set prompt = 'jpl [\!]%' ) Note that you must escape the exclamation point. 
5. savehist the number of history lines to save at logout. 
6. status the status of the last command executed. 
7. argv the command line arguments of the current shell (an array) 
8. #argv the number of arguments to the shell (not counting arg[0]) 
9. shell the pathname of the shell 

10. path the list of directories to be searched by the shell to find commands 
11. $$ the pid (process id) of the current shell 
12. user 

Yet another type of C Shell variable is used to contain or hold information that can be exported to 
other shell processes. These variables are called environment variables and by convention utilize 
capital letters. Some of these variables are given below. 

1. EDITOR the pathname of the default text editor 
2. LOGNAME the userid of the person who is currently logged in 
3. HOME the pathname of login directory (used by cd and to expand ~) 
4. TERM the type of terminal being used 
5. PATH the list of directories to be searched by the shell to find commands 
6. SHELL the pathname of the shell 
7. USER 

Three shell variables (term, path, and user) have corresponding environment variables (TERM, 
PATH, USER). If one of these shell variables is modified, its corresponding environment variable 
is modified automatically. Changing one of the three environment variables mentioned above, 
however, does not automatically affect its corresponding shell variable. 

The set , setenv, and @ commands are used to assign values to C Shell variables. The set 
command assigns values to shell (local) variables. The setenv command assigns values to 
environment variables, and the @ command is used in assignment to numeric variables. 

In the example below, a local shell variable word is assigned the string value hello. Note that 
spaces may surround the equal sign. (In the Bourne Shell spaces may not surround the equal sign 
in an assignment.) Immediately after the assignment the value of variable word is printed with the 
echo command. The dollar sign ($) is the dereferencing operator in both the C and Bourne Shells. 

 (1) % set word = hello 
 (2) % echo $word 



Unix and Shell Programming Basics Strona 21 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

 hello 

The use of command set with no arguments will result in a list of all the shell variables and their 
values. As mentioned earlier, the set command can also be used to "turn on" switch variables. 

 (3) % set ignoreeof 

Array values can also be assigned to C Shell variables as shown below 

 (4) % set cars = (ford toyota chevy) 
 (5) % echo $cars 
 ford toyota chevy 
 (6) % echo $cars[2] 
 toyota 
 (7) % echo $cars[2-3] 
 toyota chevy 

Most of the arithmetic operators available in the C language are also available in the C Shell when 
one uses the @ command as shown below. 

 (8) % @ count = 0 
 (9) % echo $count 
 0 
 (10) % @ count++ 
 (11) % echo $count 
 1 
 (12) % @ count = 5 + 1 
 (13) % echo $count 
 6 
 (14) % @ count = (3 * 4) 
 (15) % echo $count 
 12 
 (16) %  @ count += 3 
 (17) % echo $count 
 15 

Page 315 in your textbook gives a complete listing of the arithmetic operators supported by the C 
Shell. 

The C Shell also supports the use of curley braces to clearly denote the names of variables during 
dereferencing. 

 (18) % set x = John 
 (19) % echo ${x}son 
 Johnson 

The History Facility and History Substitution
The C Shell saves several of the last commands (called events) that it was issued in what is called 
the history list. The size of this list is determined by the value of the shell variable history. You 
can print out the value of this variable or you can modify its value to alter the size of your history 
list. 

There is also a C Shell command called history. When issued with no arguments this command 
simply displays the contents of the history list. When a numeric argument is provided, the history 
command displays the number of most recent events in the history list indicated by that argument. 
For example, the following shell command prints the last 5 events that occurred which includes 
the current history command itself. 



Unix and Shell Programming Basics Strona 22 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

 (20) % history 5 
 16 @ count += 3 
 17 echo $count 
 18 set x = John 
 19 echo ${x}son 
 20 history 5 

Use of the -r option causes the most recent events to be printed first. 

 (21) % history -r 5 
 21 history -r 5 
 20 history 5 
 19 echo ${x}son 
 18 set x = John 
 17 echo $count 

Note that the value of variable savehist is the number of most recent commands that are to be 
saved across login sessions. 

There are three ways in which to reference a past event. These are illustrated below. 

1. Give the absolute number of an event (i.e. the number an event is associated with in the 
history list). For example, to execute the event numbered 19 in the history list type the 
following command. 

 (22) % !19 
 echo ${x}son 
 Johnson 

2. Give the number relative to the current event. For example, to execute the second preceding 
event, event 21, type the command 

 (23) % !-2 
 history -r 5 
 <output not shown> 

3. Give text that forms the prefix of a previous event. For example, to execute the most recent 
echo command type the following command. 

 (24) % !e 
 echo ${x}son 
 Johnson 

(Note: If a command that begins with an "e" other than the echo command had been executed 
more recently than the last echo command it would be executed again.) 

(!! is a special command that causes the last event to be executed again just as it was previously.) 
To execute a previous command that contained text embedded anywhere within it use question 
marks. In the following command the last event that contained the text son is executed. 

 (25) !?son? 
 echo ${x}son 
 Johnson 

The above techniques for referring to previous events can be used to augment a command. For 
example, if one wanted to add the argument jumps to the echo command representing event 25 
above, the following command would do the trick. 



Unix and Shell Programming Basics Strona 23 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

 (26) % !25 jumps 
 echo ${x}son jumps 
 Johnson jumps 

Replacement or substitution of text in the last command executed (the last event) is easy to do in 
the C Shell. Consider the command given below which replaces the text jumps with the text hops 
in the last command executed (event 26). 

 (27) % ^jumps^hops 
 echo ${x}son hops 
 Johnson hops 

Replacement or substitution of text in any event recorded in the history list can also be done in the 
C Shell. Consider the command given below which replaces the text son found in event 19 with 
the text ston. 

 (28) % !19:s/son/ston 
 echo ${x}ston 
 Johnston 

Because the exclamation mark (!) is a special character in the C Shell, you may have been 
wondering how to simply print the symbol ! on the terminal screen. The following command does 
just that by "escaping" the special meaning of the ! with a backslash (\). 

 (29) % echo \! 
 ! 

A useful shortcut is to use the two symbols !* to represent all the arguments that were used in the 
previous event. For example, assume that you had just executed the following command. 

 (30) % echo a b c 
 a b c 

Now to access all of the arguments used in the last event (event 30 above) you could simply use 
the symbols !* as shown below. 

 (31) % echo !* !* 
 echo a b c a b c 
 a b c a b c 

The following example shows how options are treated when using the symbols !* for argument 
access. 

 (32) % ls -l file1 file2 
 -rw------- 1 jpl  faculty 64  Dec 18  14:21 file1 
 -rw------- 1 jpl  faculty 3443 Oct 29   17:42 file2 
 (33) % echo !* 
 echo  -l file1 file2 
 -l file1 file2 

The following examples are meant to demonstrate other features of command line manipulation 
and event access supported by the C Shell. 

 (34) % echo one two three four 
 one two three four 

Select the second argument from event 34 



Unix and Shell Programming Basics Strona 24 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

 (35) % echo !34:2     
 echo two 
 two 

Select the first argument from event 34 in two different ways. 

 (36) % echo !34:1 
 echo one 
 one 
 (37) % echo !34:^ 
 echo one 
 one 

Select the last argument from event 34 in two different ways. 

 (38) % echo !34:4 
 echo four 
 four 
 (39) % echo !34:$ 
 echo four 
 four 

Select the command from event 34. 

 (40) % echo !34:0     
 echo echo 
 echo 

Select the second through the fourth argument from event 34. 

 (41) % echo !34:2-4 
 echo two three four 
 two three four 

Some letters can also be used to represent operations in expressions of the type shown above. The 
following examples illustrate this. 

 (42) % echo /home/carmel/xxx/file1  /home/carmel/yyy/file2 
  /home/carmel/xxx/file1  /home/carmel/yyy/file2 

Remove the last element of the pathname given by the first argument of the previous event. 

 (43) % !!:h 
 echo /home/carmel/xxx/file1  /home/carmel/yyy/file2 
 /home/carmel/xxx  /home/carmel/yyy/file2 

Print the pathname given as the second argument of event 42 after removing the last element of 
that pathname. 

 (44) % echo !42:2:h 
 echo  /home/carmel/yyy 
 /home/carmel/yyy 

You might want to experiment with the letter t which causes the removal of all elements from a 
pathname except the last. 

Command Aliasing



Unix and Shell Programming Basics Strona 25 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

alias = a name given to a command or list or commands 

To create an alias use the alias command. 

Syntax: alias [ <name> [ <command(s)> ] ] 

In the example below, the command ls -ls is given the alias ll. 

 (45) % alias ll 'ls -ls' 

It is now possible to invoke the command ls -ls using only the alias ll . Arguments are simply 
added to the end of the alias as shown below. 

 (46) % ll file1 file2 

Consider the following alias that returns the number of persons currently logged onto the system. 

 (47) % alias c  'who | wc -l' 
 (48) % c 
      1 

When the alias command is used with a name only, the value of that name is returned. 

 (49) % alias c 
 who | wc -l 

The alias command used with no arguments returns the values of all aliases. The unalias 
command deletes the alias named as its argument. 

 (50) % unalias c 

The symbols !* can be used to refer to all arguments that are passed to an alias (i.e. to the current 
command). In the following definition of alias s, the arguments used with alias s will be passed as 
arguments to the cat command within the alias definition. 

 (51) % alias s 'cat \!* | sort' 

In the following example, file1 and file2 will both be passed as arguments to the cat command. In 
other words, files file1 and file2 will both be concatenated and then this concatenated result will 
be read by the sort command. 

 (52) % s file1 file2 

In an alias definition, if the ! symbol is used alone (i.e. not followed by an *) then it refers to the 
current event. This allows the same mechanism for command line argument substitution 
explained previously for the history mechanism to be used when creating an alias. Consider the 
examples given below. 

 (53) % alias lastarg  echo \!:$ 
 (54) % lastarg one two three four 
 four  
 (55) % alias second  echo \!:2 
 (56) % lastarg one two three four 
 two 



Unix and Shell Programming Basics Strona 26 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Files that are used for initialization and termination.
The files .cshrc , .login , and .logout are run automatically by the C Shell. These files generally 
contain commands that are used to set up the working environment of a shell. Aliases can be 
defined, environment variables can be given values, and other tasks can be performed that are 
needed to set up the environment of a shell. 

Every time a new shell is created, the commands in the .cshrc file are executed within that new 
shell automatically. New shells are created when logging onto a system and when running shell 
scripts. (Shell scripts are programs composed of shell commands.) The commands in the .login 
file, however, are only executed once when logging onto a system. These commands are executed 
just after the commands in the .cshrc file. The commands in the .logout file also are executed only 
once, this time when logging out from a system. 

We will now begin to focus more on the Bourne Shell but will also discuss facilities which are 
found in both the C and the Bourne Shell. When a facility is limited to a certain shell that fact will 
be noted. 

The Bourne Shell also allows one to create variables that can be used on the current command line 
directly or in shell scripts. Some of the properties of the shell are controlled by shell variables. As 
with other types of variables, shell variables can be read and modified. 

1. Some standard Bourne Shell variables: 

       A.    HOME - user login directory.
       B.    MAIL - names the standard file where your mail is kept.
       C.    PATH - where the shell looks for commands.
       D.    PS1 - primary prompt string ("$")
       E.    PS2 - secondary prompt string (">")

2. The Bourne Shell command set prints a list of shell and environment variables and their 
values. 

3. Bourne Shell variable names must begin with a letter or underscore and may contain letters, 
digits, and underscores. 

4. Bourne Shell variable values that contain spaces or tabs must be quoted. Example : 
WORDS="this is a sentence" 

5. Shell variables are local to the current shell unless you explicitly specify otherwise. Shell 
files (programs) normally run in a subshell and cannot change the value of a variable in the 
parent shell. 

NOTE: To dereference a shell or environment variable precede its name with a dollar sign. You 
may also delimit the name with curley braces to avoid any ambiquity. 

Information about Bourne Shell variables.
Some special Bourne Shell variables that are automatically set by the shell are: 

1. $? - value returned by the last executed command. ($status in the C-shell.) 
2. $$ - process number of the current shell. 



Unix and Shell Programming Basics Strona 27 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

3. $! - process number of last background process shell invoked. 
4. $# - number of arguments to the shell. (#arg in C-shell) 
5. $* - all arguments to the shell. (argv in C-shell) 

Bourne Shell variables are easy to create, assign to, and reference. 

      $ color=blue  
      $ echo $color 
      blue
      $ echo $colors
      
      $ echo ${color}s
      blues

Note that in the C Shell the first line above would be replaced with "set color=blue" or if 
exportation is desired "setenv color blue". To export a shell variable in a Bourne Shell to a 
subshell one must use the export command: export color. 

You can remove the value that has been assigned to a variable simply by assigning it the empty 
string. 

 $ color= 
 $ echo ${color} 
  
 $ 

A variable can be declared to be read-only by using the readonly command. Once this is done the 
variable may not be changed. 

 $ max=10 
 $ echo ${max} 
 10 
 $ max=11 
 $ echo ${max} 
 11 
 $ readonly max 
 $ max=12 
 max: is read only 
 $ 

You should assign a value to a variable before declaring it to be read-only. Since the default value 
of a variable is the empty string, if you declare a new variable to be read-only before that variable 
has been assigned a value, it will be automatically assigned the empty string as its read-only value. 

The Bourne Shell read command allows you to assign to shell variables information that is 
provided in the standard input. The read command reads one line from the standard input and 
assigns the first word (nonblank sequence of characters) to the first variable, the second word to 
the second variable, etc. If more words appear on the input line than variables in the read 
command, then all extra words are also assigned to the last variable. 

 $ cat fun 
 echo "What are your two favorite pets?  \c" 
 read pets 
 echo "Your favorite two pets are :  ${pets}" 
 $ fun 
 What are your two favorite pets?  dog and cat 
 Your favorite two pets are : dog and cat 
 $ 
 $ cat cmd 



Unix and Shell Programming Basics Strona 28 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

 echo "What is your favorite Unix command?   \c" 
 read nice_cmd 
 $nice_cmd 
 echo "I like the command $nice_cmd also." 
 $ 
 $ cmd 
 What is your favorite Unix command ?   date 
 Tue Aug 24 10:26:29 MST 1993 
 I like the command date also. 
 $ 

Consider this last example that used the read command to assigns words to several shell variables. 

 $ read w1 w2 w3 w4 
 This is a very good example. 
 $ echo $w1 
 This  
 $ echo $w2 
 is  
 $ echo $w3 
 a 
 $ echo $w4 
 very good example. 

Meta-characters in the Bourne and C Shells. The Bourne and C Shells both recognize several 
characters as standing for something other than their literal self. This allows the user to use 
regular expressions in shell commands. * matches any string of zero or more characters. 

Examples:

  
                     $ echo * # prints names of all files
                              # in working directory except 
                              # those starting with "."
      
                     $ rm * 
      
                     $ ls -l *.c
      
                     $ more ch*.tex
         

? matches any single character. 

Example:

 
                  $ echo c?e3?? # matches cse320 and cse396
                                # but not cse486 or cse172
                    
                  $ ls ??   # list all filenames in the
                            # working directory that 
                            # contain exactly two 
                            # characters

Pattern matching in the shell is a bit different than it is in the editor. Patterns are anchored. Thus 
the symbol that matches any single character (?) in the shell matches only single character 
filenames. (In "ed" or "vi" the dot matches every non-blank line.) 

'...' single quotes protect metacharacters from being interpreted. When quoted, metacharacters 
simply represent their literal values. 



Unix and Shell Programming Basics Strona 29 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Examples:

  
                     $ echo '*'
                     *
      
                     $ echo x '*' y 
                     x * y
      
                     $ echo '?'A 
                     ?A

Notes : Arguments to echo separated by multiple spaces or tabs are printed with a single space 
separating them. 

      \   the backslash is an escape character which turns
          off the special meaning of a metacharacter.

Example:

  
  $ echo \*  
                *

Note that a backslash at the end of a line causes the line to be continued. 

Example:

  
                $ echo abc\
                    def\
                    ghi
                    abcdefghi

`...` this is called command line substitution. The output of the command represented by ... is 
substituted for the command itself. 

Example:

 
  $ echo The date is: `date` 
                The date is: Thu Aug 8 15:48:01 MST 1991

When interpreting output in backquotes as argu- ments, the shell treats newlines as word sep- 
arators. 

Example:

 
  $ cat file1 
                one
                two
                $ echo `cat file1`
                one two

"..." double quotes protect all metacharacters except $ , `...` , \ 

Examples:



Unix and Shell Programming Basics Strona 30 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

  
         $ A=10 
      
                     $ echo "$A" 
                     10
      
                     $ echo '$A' 
                     $A
      
                     $ echo "`date`" 
                     Thu Aug 8 15:48:01 MST 1991
      
                     $ echo "\$A"
                     $A
  

# comment delimiter. Everything after the # and up to the newline is ignored. (Bourne Shell) 

Example:

           $ ls # hello

      [...]   matches any single character in the brackets.
              This is called a character class.
      
           - to get "]" inside, put it first
      
           - ranges may be given, some examples are:
                 [0-9],[a-z],[A-Z],[0-9f-v]
      
           - ^ as a first element is the negation operator

Example: [^0-9] = any character not a digit 

Example:

                echo c?e[34][0-9]*  # matches cse320,cse486,
                                    # cxe39xxf, cse396

Shell script parameters. It is possible to write programs that consist only of shell commands. 
These are called shell scripts or shell programs or shell files. We will write shell programs using 
Bourne Shell commands. All discussions concerning shell programs should assume that the 
programming is being done using Bourne Shell attributes and facilities. 

When you invoke a shell script you can pass parameters to the shell program. These shell 
command line arguments are called positional parameters. 

The name of the nth positional parameter is $n. Consider the following invocation of shell script 
"sh_cmd" and its two arguments f1 and f2: 

      sh_cmd f1 f2

Note that the same command line syntax applies as we discussed before. Now consider: 

      f1 is the first positional parameter. Inside the
      shell script (sh_cmd) it is referred to as $1.
      
      f2 is the second positional parameter. Inside the shell
      script (sh_cmd) it is referred to as $2.



Unix and Shell Programming Basics Strona 31 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

      
      The positional parameter named $0 is the name of the
      shell script itself.

Example:

         $ cat sh_cmd
         echo "0th positional parameter = $0"
         echo "1st positional parameter = $1"
         echo "2nd positional parameter = $2"
         $ sh_cmd bill 10
         0th positional parameter = sh_cmd
         1st positional parameter = bill
         2nd positional parameter = 10

In the example above, "sh_cmd" is simply an ascii file that could have been created with any 
editor. Also note that after "sh_cmd" was created it needed to be given executable permissions. 
This is not shown in the above example. Now consider the following example that makes use of 
two of the special variables set by the Bourne Shell. 

Example:

         $cat sh_file2
         echo "All arguments = $*"
         echo "Number of arguments = $#"
         $sh_file2 1 sam "hi there"
         All arguments = 1 sam hi there
         Number of arguments = 3

You may also explicitly set the shell (positional) parameters of any Bourne Shell by using the set 
command with arguments. Each of the arguments to the "set" command will become positional 
parameters of the current shell after the "set" command is executed. 

Example:

         $ set 2 sam "hi there"
         $ echo $1
         2
         $ echo $2
         sam
         $ echo $3
         hi there

Example:

         $ echo $#
         0
         $ set a b c
         $ echo $#
         3

Note that in the C Shell the set command is used for assignment of local shell variables and the 
setenv command is used for assignment to shell variables that are to be exported to subshells. 

Example:

         (19)% setenv g "g value"
         (20)% set t="t value"
         (21)% cat sh_file
         echo "g = $g"



Unix and Shell Programming Basics Strona 32 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

         echo "t = $t"
         (22)% sh_file
         g = g value
         t = 

Input/output redirection (Bourne and C Shells)
Every program has three default files created when it starts execution (e.g. at login). These are: 

1. standard input (stdin) is opened first 
2. standard output (stdout) is opened second 
3. standard error (stderr) is opened third 

Each file is numbered by small integers called file descriptors. File descriptors are generally 
integers between 0 and 19 (the limit is system dependent) which may be used to reference files 
that have been opened for input and/or output. File descriptors are offsets into the Unix System 
Process File Descriptor Table. 

1. standard input (stdin) has file descriptor 0 
2. standard output (stdout) has file descriptor 1 
3. standard error (stderr) has file descriptor 2 

Each individual Unix process has its own File Descriptor Table. This table contains pointers to 
information about each open file. This information is available to its associated process. 

I/O redirection is accomplished as follows: 

1. A standard file (input,output,err) is closed. 
2. The file named for redirection is opened. 
3. A new file pointer replaces the closed File Descriptor Table entry. 

The symbols < , > , and >> have special meaning on a shell command line and are used to specify 
redirection : 

      <  redirects current input to the named file

Example: wc -l < file1.c In this example, the input is initially stdin. > redirects output to the 
named file 

Example: ls > list.out In this example, the output is initially stdout. (wc -l >&file1.c # csh 
stderr/stdout redirection) >> redirects output to the named file but does so as an append operation 

Example: ls >> oldlist.out 

Examples:

      $ who > temp
      $ wc -l < temp   # prints the number of users logged in
      
      who >temp
      grep mary <temp # Is mary logged in ?

It is important to understand that the interpretation of < , > , and >> is being done by the shell. 
This allows you to use these special symbols with any program. 



Unix and Shell Programming Basics Strona 33 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

      sort < temp   In this example sort is used with no
                    arguments and so it defaults to
                    reading its standard input. Its
                    standard input is, however, redirected
                    so that it comes from file "temp" and
                    not the terminal. This redirection is
                    taken care of by the shell. Utility
                    sort knows nothing about a file called
                    temp; it simply reads from
                    stdin.
      
      sort temp     Here sort sees the filename "temp" as
                    an argument. It must open this file 
                    called "temp", read it, and sort it.
      
      sort          Utility sort now waits for the user to
                    type in the input since the default
                    standard input is the terminal keyboard

The following examples should give you some more ideas about what is going on underneath in 
the operating system internals when redirection is done. 

Example:

      cat file.old > file.new

The above example results in the following: 

1. The default standard output file is closed. 
2. file.new is opened for writing and becomes the new standard output. 

Example:

      cat > file1       FILE DESCRIPTOR TABLE
                     0  13579
                     1  13589
                     2  13593

      The default standard output gets closed.
      file1 gets opened and the pointer 57924 is returned.
      
                        FILE DESCRIPTOR TABLE
                     0  13579
                     1  57924
                     2  13593

Dereferencing shell variables and command line substitution (`...`) can be used when specifying 
filenames for use in redirection but stay away from using other metacharacters for this purpose. 

Examples:

      $ wc -l < *.c         NOT GOOD
      
      $ wc -l < "${dest}"   OK
      
      $ a=defs.h
      $ cat < $a            OK
      
      $ cat aa
      defs.h
      $ cat < `cat aa`      OK



Unix and Shell Programming Basics Strona 34 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

The Bourne Shell supports redirection in these additional ways: 

      echo hello      is equivalent to echo hello >&1
      
      2 > &1          put stderr on same stream as stdout
      
      1 >&2           put stdout on same stream as stderr
      
      2 >file         redirect stderr into file
      
      2 >>file        append stderr onto file
      
      1 >>file
      
      1>file
      
      test.err 2>&1 >err.file
         stderr -> stdout
         stdout -> err.file  # &1 and &2 are now different
      
      test.err >err.file 2>&1
         stdout -> err.file
         stderr -> stdout=err.file # &1 and &2 are same now
      
      sh <numusers  --> stdin=numusers
      sh numusers   --> stdin=terminal; sh runs numusers

The C Shell allows one to redirect standard out and standard err to the same file by using an 
ampersand as shown below. 

 cat file1 file2 >& file.out 

Pipelines and Processes (Bourne and C Shells)
Pipes. The pipe facility was a fundamental contribution of the Unix system. Pipes often can free 
one from using temporary files. 

      
      pipe      connects the output of one program to the
                input of another without using a temporary
                file
      
      pipeline  a connection of two or more programs 
                through pipes

Examples:

         who | sort
       
         who | wc -l  # number of users logged in.
      
         ls | wc -l   # number of files in current dir
      
         who | grep jpl  # Is jpl logged in ?

Any program that reads from stdin can read from a pipe instead. 

Any program that writes to stdout can write to a pipe instead. 

This is the importance of the convention that programs write by default to stdout and read by 



Unix and Shell Programming Basics Strona 35 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

default from stdin. 

Programs in a pipeline all run at the same time; the kernel schedules and synchronizes them. 

The exit status of a pipeline is non-zero if the exit status of the last command in the pipeline is 
non-zero. 

Example:

  $ ls 
  file1 file2 
  $ cat file1 
  1 
  2 
  3 
  $ cat file1 | grep xxx 
  $ echo $? 
  1 

filter - a program designed to fit as a stage in a pipeline. 

Characteristics of a filter : 

1. Takes input from stdin by default (needs no filename). 
2. Sends output to stdout (needs no filename). 
3. Performs well defined transformation on input. 
4. Produces output with no header/trailer info etc. 
5. All of input is simply data. 
6. Generally is not interactive. 
7. Error/diagnostic output goes to stderr (not to stdout). 

Processes. Processes have a hierarchical structure. Each process has a parent and may have 
children. Your shell was created by a process associated with whatever terminal line connects you 
to the system. As you run commands those processes are the direct children of your shell. A child 
process inherits user/group ids, open I/O channels, and environment variables. 

      process    - an instance of a running program
                 - the execution of an image
                 - compiled program + process environment
      
      image       a computer execution environment,
                  including contents of memory, register
                  values, name of current directory, status
                  of open files, info recorded at login 
                  time, etc.
      
      process-id  processes are identified internally by an
                  id number
      
      &           allows a command to be started and run in
                  the background
      
                  wc bigfiles* > bigcount.out &
      
                  Note that & applies to commands and since
                  pipelines are commands you don't need 
                  parentheses with pipelines:
      
                  pr file | lpr &
      



Unix and Shell Programming Basics Strona 36 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

      ;           command separator
                  
                  who ; date # commands are run in sequence
      
                  date ; who | wc --> date;(who|wc)
                     # a pipeline is one command
      
                  (date;who) | cat
                     # all output goes into pipe
      
                 
      kill [ -signal] <process-ids>  default signal is 
                                     15 (terminate)
      
         
      kill 0   kill all processes resulting from current
               login (except the shell)
      
      kill -9 <process-ids>  a sure kill since it can't be caught
      ps     - displays status of current processes
             - lists processes you are running in
                foreground and background.
          -a = all processes most frequently requested, 
          -e = every process now running  
          -l = long listing 

Examples:

         $ wait     # wait until all processes started with
                      & have finished
      
         $ pr ch* | lpr -Prp66 & # pr formats and prints file 
         6951       # pid is printed
      
         $ kill 6951

The following C Shell commands are often useful. 

      jobs - displays existing stopped/suspended jobs 
      
      fg <job_id>  - can use %<job_number> , %+ , %- ,
            %<command_name_prefix> , or <text> 
            <text> is a prefix of a job's command. 
      
      %+  - most recently suspended job 
      
      %-  - next most recently suspended job 
      
      ctrl-z  - stops the current job 

Miscellaneous Commands.
      tee        saves data flowing through a pipe into a 
                 file (Example: echo hi|tee f1 f2 f3|cat)
      
      tee -a     appends input to existing files
      
      sleep n    wait n seconds
      grouping   (sleep 5;date) , (sleep 5;date)&

Shell Programming in the Bourne Shell



Unix and Shell Programming Basics Strona 37 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Creating new commands
      
      $ cd
      $ echo 'who | wc -l' > numusers
      $ chmod +x numusers
      $ mkdir bin   # do this if you have no bin already
      $ mv numusers bin

      Now change your PATH shell variable in your .login
      file to include your bin ($HOME/bin) if it does not
      include it already.
      
      Note: If a file is executable and it also contains
      text, then it is assumed by the shell to be a file
      of shell commands.
      
      A shell script will be run in the Bourne Shell unless
      a "#" character is placed at the very start of that 
      file.
      
      Note: It is a good idea to make the first line of
         every shell program  #! /bin/sh  or whatever the 
          desired shell is. 

Control Structures (for the Bourne Shell)
      for <variable> in <a list>
      do
         <command list>
      done
      
      <a list>   a list of blank separated strings
      <variable> takes on value from each string in 
                 <a list>

Examples:

         for i in $*    =  for i
         do                do
             echo $i          echo $i
         done              done
      
         for i in *
         do
             echo "`ls -l $i` `file $i`"
         done
      
         for i in *
         do
             echo "The type of the file named $i:"
             echo
             file $i
         done
      
         for i in *
         do
             cat $i
         done | grep smith >smith.out #note where loop 
                                       output goes

Examples of some for loop header lines:



Unix and Shell Programming Basics Strona 38 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

            for i in $*
            for i in `cat file.lst`
            for i in 2 4 6
            for i in file1 file2 file3

Example using expr :

         set 1
         for i in *.c
         do
            echo "### File $1   ###"
            cat $i
            set `expr $1 + 1`
         done

Note that "expr" can perform arithmetic operations on its args. But many operators (e.g. 
parentheses, ampersands,asterisks) are shell metacharacters and so must be escaped. 

         count=10
         count=`expr $count + 1`
         expr 4 + 5
         expr 5 \* 4

Exit status.

Every command returns an exit status. An exit status is a value returned to the shell to indicate 
success or failure. 

          0 = success/true
      
          nonzero = not successful/false

Example:

 grep returns 0 if a match occurred
                                1 if no match occurred
                                2 if an error occurred
                                  in pattern or filenames
                  $ grep hello xxx    # there is no xxx
                  $ echo $?
                  2

The test command.

"Test" is a useful command to use with the "if" statement. The sole purpose of "test" is to return 
an exit status. 

      test options for files :
      
         -r     true if file is readable
         -w     true if file is writable
         -x     true if file is executable
         -s     true if file size > 0 and is a file or
                directory (false on device files etc.)
         -d     true if file is a directory
         -f     true if file exists and is not a directory
      
      
      test options for strings:
      



Unix and Shell Programming Basics Strona 39 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

         -z       true if string is length 0
         -n       true if string length > 0
         s1 = s2  true if string s1 equals string s2
         s1 != s2 true if string s1 does not equal sting s2
         s1       true if s1 is not the empty string

Example:

        $ test "" 
        $ echo $? 
        1 

test options for numeric operators: -eq, -ne, -gt, -ge, -lt, -le test options for logical operators: -a 
and operator -o or operator Notes: The test command does not allow concatenation of options. For 
example, the command test -rw file is illegal; you must use the command test -r -w file In the 
command test "3"="4" , "3"="4" is seen as one string. To get a string comparison you must use 
spaces as shown here test "3" = "4" . Selection statements. if <command list1> then <command 
list2> fi if <command list1> then <command list2> else <command list3> fi if <command list1> 
then <command list2> elif <command list3> then <command list4> else <command list5> fi Here 
control flow is based on the success or failure of the executing programs. True means that the last 
command in the command list had an exit status of 0. (An exit status indicates success or failure.) 
The exit status of the "if" statement is the exit status of the last command in any "then" or "else" 
clause. Also note that "if", "then" ,and "else" are recognized only after a newline or semicolon. if 
test -f shl.in; then echo hi; fi ! is used for negation ( if test ! -w $fname ... ) Note: the space after 
the "!" is important. 

Examples:

      if test -r $filename
      then echo "$filename is readable."
      fi
      
      if test 4 -lt 5 -a 5 -lt 6
      then echo yes
      fi
      
      if test \(3 -gt 2 \) -a \(4 -eq 4 \)
      then rm oldfile
      fi
      
      if cp foo1 foo1.cpy
         cp foo2 foo2.cpy
         test -f foo3
      then
       echo YES 
      else
       echo NO 
      fi
      
      for next in *
         do
            if test -f $next
            then
                echo "$next is a file."
            elif test -d $next
            then
                echo "$next is a directory."
            else
                echo "$next is neither."
            fi
         done
      



Unix and Shell Programming Basics Strona 40 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

      test -f "$fn" is equivalent to [ -f "$fn" ]
      where the spaces are important
             
      if [ -f sfle ]
         then echo yes
      fi

Examples with strings:

         ST1=hi
         ST2=ho
         if test $ST1 = $ST2
         then echo no
         fi

While Loops
  while <command_list> 
 do 
  <command_list> 
 done 

Example 1:

 $ ls 
 tst1  tst2   tst3 
 $ while test -f tst3 
 > do 
 > if test -f tst1 
 > then  
 >  rm tst1 
 >  echo STEP 1 DONE 
 > else 
 >  rm tst2 
 >  rm tst3 
 >  echo STEP 2 DONE 
 > fi 
 > done 
 STEP 1 DONE 
 STEP 2 DONE 
 $ 

Example 2: 

 $ cnt=1 
 $ while test $cnt -ne 5 
 > do 
 > echo $cnt 
 > cnt = `expr $cnt + 1` 
 > done 
 1 
 2 
 3 
 4 

Until Loops
  until <command_list> 
 do 
  <command_list> 
 done 



Unix and Shell Programming Basics Strona 41 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Example 1:

 $ cnt=1 
 $ until test $cnt -eq 5 
 > do 
 > echo $cnt 
 > cnt=`expr $cnt + 1` 
 > done 
 1 
 2 
 3 
 4 

Example 2:

 $ cat mailwhenlogson 
 until  who|grep "${1}" > /dev/null 
 do 
  sleep 300 
 done 
 mail "${1}" << end 
 Glad to see that you have logged on. 
 end 
 $ mailwhenlogson jpl & 
 19875 
 $ You have new mail. 

The break and the continue commands. The break and the continue commands work as expected 
with the for, while, and until loops. 

 cnt=0      OUTPUT: 
 while true  
 do      5 
  cnt=`expr $cnt + 1`   6 
  if test $cnt -eq 10   7 
  then     8 
   break    9 
  elif test $cnt -lt 5  
  then 
   continue 
  fi 
  echo $cnt 
 done 

The shift command
Using the positional parameters ($1, $2, ... , $9) only allows you to access the first nine command 
line arguments to a shell script. The shift command allows you to access any number of command 
line arguments. Each time the shift command is executed, the second positional parameter ($2) 
becomes the first positional parameter ($1) , the third ($3) becomes the second ($2) , etc. The 
argument that was the first positional parameter before the shift command was executed is lost 
(made inaccessible). 

Example:

 $ cat printargs 
 cnt=1 
 while test "$1" != "" 
 do 
  echo "Argument $cnt = ${1}." 



Unix and Shell Programming Basics Strona 42 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

  cnt=`expr $cnt + 1` 
  shift 
 done 
 $ printargs 1 2 3 4 5 6 7 8 9 10 11 12 
 Argument 1 = 1.  
 Argument 2 = 2. 
 Argument 3 = 3. 
 Argument 4 = 4. 
 Argument 5 = 5. 
 Argument 6 = 6. 
 Argument 7 = 7. 
 Argument 8 = 8. 
 Argument 9 = 9. 
 Argument 10 = 10. 
 Argument 11 = 11. 
 Argument 12 = 12. 

The shell logical operators
      ||   logical OR
            
           test -f file1 || echo "file1: not a simple file"
      
           The command to the left is executed. If its exit
           status is zero, the command to the right is 
           ignored. Otherwise the command to the right is
           executed and its exit status is returned.
           (short circuit evaluation)
      
      &&   logical AND
      
           && executes its right operand only if its left
           one succeeds (i.e. returns 0 exit status)
      
      NOTE: The following may be helpful.
         true 
         false
         :   (returns true --> while :)

Example:

      $ false
      $ echo $?
      255
      $ true
      $ echo $?
      0
      $

Miscellaneous Examples
      cc prog.c lib.c & cd /$HOME/bill ; ls -l

         The shell creates a new process and executes cc
         in that process. Without waiting for cc to end the
         shell sequentially executes the cd and ls commands
      
      test -d  ../tools && cd ../tools
      
         If ../tools exists and is a directory, then make
         it the current working directory.
      
      test -d ../tools || mkdir ../tools
      



Unix and Shell Programming Basics Strona 43 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

         If directory ../tools does not exist, then create
         it.

The case statement
case <word> in
<pattern> ) <command_list> ; ;
<pattern> ) <command_list> ; ;
  . . .
esac

The <word> is compared to the patterns from top to bottom. The first pattern matched (and only 
the first pattern matched) causes the command list associated with that pattern to be executed. 

In the following shell program, which is a modified version of an example given in The UNIX 
Programming Environment by Kernighan and Pike, the case statement is used to make the cal 
command more user friendly. 

case $# in
0)  set `date`; m=$2; y=$6;;  # No args given. Give data from today's date. 
1) m=$1; set `date`; y=$6;;  # One arg given. Use this year. 
*) m=$1;  y=$2 ;;     # Two args given (month and year). 
esac
case $m in
[jJ]an*)  m=1 ;; 
[fF]eb*)  m=2 ;; 
[mM]ar*)  m=3 ;; 
[aA]pr*)  m=4 ;; 
[mM]ay*)  m=5 ;; 
[jJ]un*)  m=6 ;; 
[jJ]ul*)  m=7 ;; 
[aA]ug*)  m=8 ;; 
[sS]ep*)  m=9 ;; 
[oO]ct*)  m=10 ;; 
[nN]ov*)  m=11 ;; 
[dD]ec*)  m=12 ;; 
[1-9]|10|11|12)  ;;    # A numeric month was given. No need to convert. 
*)   y=$m;  m=""  ;; # Just the year was given. 
esac
/usr/bin/cal $m $y  # Call the system cal command. 



Unix and Shell Programming Basics Strona 44 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Here Documents
A here document is found within a shell program and has the following form. 

 <command> << <end_word> 
 <Text of here document> 
 <end_word> 

The symbols << mark the beginning of the here document. The user-defined <end_word> can 
contain one or more characters and is used to mark the end of the here document when it is placed 
on a line by itself. The command itself reads from the standard input which has been redirected so 
that the command actually is reading from the text of the here document. All characters found 
within the text of the here document are interpreted literally (i.e. none are treated as 
metacharacters). 

Example 1:

 $ mail jpl << end 
 >This is a test. 
 >1 2 3. 
 >end 
 $ 

Example 2.

 $ mail jpl << end 
 >This is a test. 
 > 1 end 2 3 
 >end 
 $ 

Example 3.

 $ cat << end 
 > This is fun. 
 > 1 2 3 
 > end end end 
 >end 
 This is fun. 
 1 2 3 
 end end end 
 $ 

Example 4.

 $ cat phonenums 
 grep -i  $1  << endnums 
 Sally Bumkin 669-6671 
 Bob Smith  667-4352 
 Fred Zilensky 667-3455 
 endnums 
 $ phonenums Smith 
 Bob Smith  667-4352 
 $ phonenums 667- 
 Bob Smith  667-4352 
 Fred Zilensky 667-3455 

The shell trap command



Unix and Shell Programming Basics Strona 45 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

The shell trap command provides for a sequence of commands to be executed when a signal is 
detected. When a signal is sent to a running program, that program is terminated unless it includes 
explicit actions for handling that signal. 

 trap  '<command list>'  <list of signal numbers> 

Shell Signal Numbers
0 Shell exit for any reason including the end of file. 
1 Hangup. 
2 Interrupt. (ctl-c) 
3 Quit (ctl-\). This causes the program to create a core dump. 
9 Kill. (Cannot be caught or ignored.) 
15 Terminate. (This is the default signal generated by kill.) 

The following program will allow you to experiment with trapping different type of signals. 

 $ cat mytrap 
 trap 'echo "Shell exit for any reason."; echo; exit 0' 0 
 trap 'echo "Hangup signal."; exit 1' 1 
 trap 'echo "Interrupt signal."; exit 2' 2 
 trap 'echo "Quit, ctl-\\, signal."; exit 3' 3 
 trap 'echo "Kill that cannot be caught or ignored."; exit 9' 9 
 trap 'echo "Terminate signal kill."; exit 15' 15 
 cnt=1 
 while test ${cnt} -lt 1000 
 do 
  cnt=`expr ${cnt} + 1` 
 done 
 $ tst 
 ^CInterrupt signal. 
 Shell exit for any reason, 
 $ tst 
 ^\Quit, ctl-\, signal. 
 Shell exit for any reason. 
  
 $ tst & 
 25204 
 $ kill 25204 
 $ Terminate signal - kill. 
 Shell exit for any reason. 
  
 $ tst & 
 25356 
 $ kill -9 
 $ 

Misc: 

 $ at 9:05am 
 at> <cmd1> 
 at> <cmd2> 
 ^D 
 $ 



Unix and Shell Programming Basics Strona 46 z 46

file://C:\Moje dokumenty\Unix and Shell Programming Basics.htm 00-12-03

Using the Internet
The Internet is almost a mythical creature at this point. The tools which you should learn in the 
TCP/IP suite: 

" e-mail 
" telnet 
" ftp 
" lynx 
" netscape 

There are other tools, but these are sufficient to get by with considering the importance of the 
World Wide Web. 

An online course (one of many) can be found at the URL (Universal Resource Locator): 
http://www.brandonu.ca/~ennsnr/Resources/Roadmap/ 

A more interesting, and challenging, Internet experience is to partake in the Internet Hunt. 


