
 - 1 -

CIS 525 Parallel and Distributed Software Development  
 

Algorithm Computing Synchronic Distance  

of two sets of events E1 and E2 of C/E nets 
 

Given ∑=(B∑, E∑, F∑, C∑) contact-free C/E system compute synchronic distance between 

two sets of events. 

Step 1: For ∑ compute ∏∑ - the set of all finite processes of ∑; each process will be      

represented by a pair (K∑, p), where K∑ is an occurrence net and p is a mapping 

            p: S  B∑, T E∑     

Step 2: For each occurrence net calculated in step 1 compute pre-images of events E1 and 

E2, p-1(E1) and p-1(E2). 

Step 3: For each occurrence net calculated in step 1 compute a set of all slices  

sl(K∑) = {D1,D2,…,Dm}.  

Step 4: For each pre-image of E1 and E2 (as computed in step 2) assign µ - a measure of 

distance between arbitrary two slices in K∑  

 

µ (p-1(Ei), Dj, Dk) = | p-1(Ei) ∩ Dj
+ ∩ Dk

-| -|p-1(Ei) ∩ Dj
-∩ Dk

+|  

     for incomparable  slices 

i =1,2           |p-1(Ei) ∩ Dj
+ ∩ Dk

-|      if Dj < Dk  

j, k = 1,2,..,m          | p-1(Ei) ∩ Dj
-∩ Dk

+|       if Dk<Dj       

 

Step 5: Compute a variance v(p, E1, E2) between events E1 and E2 process (p: K∑  ∑), є 

∏∑ 

     

            v(p,E1,E2) = max{ µ(p-1(E1) , Dj, Dk) -  µ(p-1(E2) , Dj, Dk) : Dj,Dk є sl (K)}  

 

Step 6: Compute a synchronic distance between sets of events E1 and E2  

  (E1, E2) = sup {v(p,E1,E2): p є ∏∑ }. 

  



 - 2 -

How to compute a set of all finite processes for a given C/E system? 

 

There is a theorem which states that for each path of a case graph there is exactly one 

corresponding process. So, using this theorem one can calculate all possible paths in the 

case graph, and then to compute a process for this path. This is possible because of 

uniqueness of this relationship. 
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SYNCHRONIC DISTANCE – EXAMPLES 

 

 

1: ∑1              (E1, E2) 

 
Figure 1. Illustration of the concept of synchronic distance. 

 (E1, E2) = 2 

 (e1, e4)=   (e2, e3) =  (e1, e2) =  (e3, e4) = w 

        (e1, e3) =  (e2, e4) =1 
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2:  ∑2 

 
Figure 2. Illustration of the concept of synchronic distance. 

({e1,e2},{e3,e4}) = 1        

 

Remark 

Because of these two results we consider ∑2 as more strictly synchronized.    
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3: Example with weighted synchronic distance: 

 

 
Figure 3. Illustration of the concept of weighted synchronic distance. 
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Case graph 

 
     Figure 4. Case graph for a C/E net. 
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Example: Implement a system by specifying necessary synchronic substances. Let us 

assume that the producer and consumer have agreed that the capacity of their shared store 

house should be 4. 

 
Figure 5. Synchronic distance of the Producer-Consumer system. 
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Implementation: 

1.  

 
Figure 6. Producer-consumer model with synchronic distance. 

 

Remark: This solution allows no access from the consumer until the house is full, and no     

access from the producer until the house is empty. 
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2. 

 
Figure 7. Producer-Consumer system with synchronic distance. 
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Synchronic distance of cyclic and non-cyclic systems. 

 
Figure 8. Synchronic distance for non-cyclic system. 

 

This system is not cyclic because its case graph is not strongly connected. 
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Case graph 

 
Figure 9. Case graph 
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Remark1: a = e1, b = e2 Events a and b can still occur in any order and therefore there is 

no difference between system with b1, b5, and e4 and between system without 

this element (as long as e1 and e2 is concerned). But events e1, e2 were 

previously concurrent and now are in conflict. One can verify that now (e1,e2) 

= 1. 

 

Remark 2: Sometimes it is necessary to distinguish concurrency from sequential 

(perhaps no deterministic) behavior. Synchronic distance may sometimes be 

used to distinguish concurrency from arbitrary interleaving. If an event a may 

occur concurrently with some event b, then we will have (a, b) ≥ 2 while we 

might have (a, b) = 1 in the case of arbitrary interleaving.  

 

Example: How to decide whether or not a weight function exists such that a finite 

synchronic distance may be obtained between two sets of events and how to 

find such a weight function? 

 

Theorem. Let ∑ = (B, E, F, C) be a C/E system and E1, E2  E1 then we have 

 

                        w             if ∃p є RP(∑) : |p-1(E1)| - |p-1(E2)| ≠ 0 

(E1, E2) = {max {v (p, E1, E2) | p є SP(∑)}       otherwise 

where RP(∑) and SP(∑) are the set of reproduction processes and the set of simple 

processes of ∑.  

Def. Le p є RP (∑) be a process, p is cyclic iff p (◦K) = p (K◦) where K is the occurrence 

net of p. 

Def. Let p, p  є PR (∑).  p  is called a proper subprocess of p iff p1,p2 є PR(∑) such that p 

= p1 ◦ p  ◦ p2 and p1 or p2 is not empty. 

Def. Processes without proper cyclic subprocesses are called simple. A process is a 

reproduction process if it is cyclic and simple. 
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Example: C/E system 

 
Figure 10. C/E net. 
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Figure 11. Process net. 

 

1) Process is not simple 

2) Proper subprocess between slices D1 and D2, denoted as p'; this is reproduction 

process.  

Remark: Using this theorem we may consider only reproduction processes. These 

determine a linear equation system such that its solutions are weight functions which 

yield a finite synchronic distance. 

Problem: We would like to find weights for finite synchronic distance in all cases where 

the sets of events E1 and E2 are synchronized in the following way: 

There exists n є N such that we may not have more than n occurrences of events in E1 

without intermediate occurrence of some event in E2 or vice versa. Unfortunately, this is 

not always possible. Example of this is presented on p. 59. In this system we have two 

reproduction processes. In the one operating in the left part of the system, one occurrence 

of e0 is followed by two occurrences of e1. Conversely, we have two occurrences of e0 

and one occurrence of e1 in the other reproduction process. Hence there is no way to 

weight e0 and e1 to obtain a finite synchronic distance even though we never have more 

than two occurrences of any event in sequence.  
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