Sender and Receiver System
 Basic Properties

P1:
Sender can be in one of three states: Inactive, Ready to Send, Finished Sending

Receiver can be in one of three states:
Inactive, Ready to Receive, Finished to Receive
P2:
Message channel contains at most \mathbf{n} messages
P3:
Sender is inactive iff it sent a corresponding signal to the environment

Receiver is inactive iff it sent a corresponding signal to the environment

P4:

If Sender reached the Inactive state then it can not leave it until the Receiver has also reached its Inactive state

P5:

The decision of the Receiver whether to receive or whether to become inactive depends on the behavior of the Sender. In this respect, no conflict arises.

P6:

The Receiver may only become inactive if the channel is empty and the Sender is Inactive.

Proving properties using Place Invariants

$\mathrm{M}(\mathrm{si})$ - denotes marking of place si, i.e. number of tokens located in this place

Property P1: It can be proven by using invariants i1 and i2:

$$
\begin{align*}
& \mathrm{M}(\mathrm{~s} 1)+\mathrm{M}(\mathrm{~s} 2)+\mathrm{M}(\mathrm{~s} 3)=1 \tag{i1}\\
& \mathrm{M}(\mathrm{~s} 7)+\mathrm{M}(\mathrm{~s} 8)+\mathrm{M}(\mathrm{~s} 9)=1 \tag{i2}
\end{align*}
$$

Property P2: It indicates that channel is correctly controlled; this can be proven by invariant i3 that includes channel place s4, a complement of the channel place, and Receiver Inactive place s9:

$$
\begin{equation*}
\mathrm{M}(\mathrm{~s} 4)+\mathrm{M}(\mathrm{~s} 5)+\mathrm{n} * \mathrm{M}(\mathrm{~s} 9)=\mathrm{n} \tag{i3}
\end{equation*}
$$

Property P3: Sender can leave the Inactive state as a result of a signal from environment (place invariant i4). Receiver can leave the Inactive state as a result of signal from environment (place invariant i5):

$$
\begin{align*}
& M(s 10)+M(s 12)-M(s 3)=0 \tag{i4}\\
& M(s 11)+M(13)-M(s 9)=0 \tag{i5}
\end{align*}
$$

Places s10 and s12 represent environmental places for Sender. Places s11 and s 13 represent environmental places for Receiver.

Property 4: If the Sender reached the Inactive state, then it cannot leave it until the Receiver has reached also its inactive state (place invariant i6).

$$
\begin{equation*}
\mathrm{M}(\mathrm{~s} 6)-\mathrm{M}(\mathrm{~s} 10)+\mathrm{M}(\mathrm{~s} 11)=0 \tag{i6}
\end{equation*}
$$

S6 - place representing 'terminated message' channel
S10 - Sender's environment place
S11-Receiver's environment place
If $\mathrm{M}(\mathrm{s} 6)=1$ then $\mathrm{M}(\mathrm{s} 10)=1$
If $\mathrm{M}(\mathrm{s} 6)=0$ then $(\mathrm{M}(\mathrm{s} 10)=1$ and $\mathrm{M}(\mathrm{s} 11)=1)$
Property 5: Let t6 and 18 (transitions responsible for receiving Sender's termination message or being Inactive) be enabled by a marking reachable from the initial marking. As a result:

$$
\mathrm{M}(\mathrm{~s} 4)>=1 \text { and } \mathrm{M}(\mathrm{~s} 5)>=\mathrm{n} \text { and } \mathrm{M}(\mathrm{~s} 8)>=1
$$

Let's take invariants i2 and i3 combined together (i.e. Receiver and control channel combined together). By adding three above inequalities we get:

$$
\mathrm{M}(\mathrm{~s} 4)+\mathrm{M}(\mathrm{~s} 5)+\mathrm{M}(\mathrm{~s} 8)>=\mathrm{n}+2
$$

(this is an upper bound on the number of tokens in these three places).

$$
\mathrm{M}(\mathrm{~s} 4)+\mathrm{M}(\mathrm{~s} 5)+\mathrm{M}(\mathrm{~s} 7)+\mathrm{M}(\mathrm{~s} 8)+(\mathrm{n}+1) * \mathrm{M}(\mathrm{~s} 9)=\mathrm{n}+1 \quad(\mathrm{i} 2+\mathrm{i} 3)
$$

This implies that:

$$
\mathrm{M}(\mathrm{~s} 4)+\mathrm{M}(\mathrm{~s} 5)+\mathrm{M}(\mathrm{~s} 8)<=\mathrm{n}+1
$$

Property P6: The receiver can reach the Inactive state only when t8 is enabled, i.e.

$$
\mathrm{M}(\mathrm{~s} 5)>=\mathrm{n} \text { and } \mathrm{M}(\mathrm{~s} 6)>=1 \text { and } \mathrm{M}(\mathrm{~s} 8)>=1
$$

For such markings M, it has to be shown that:

1. $\mathrm{M}(\mathrm{s} 4)=0$ (i.e. channel is empty)

From invariant i3 we have:

$$
\mathrm{M}(\mathrm{~s} 4)+\mathrm{M}(\mathrm{~s} 5)+\mathrm{n} * \mathrm{M}(\mathrm{~s} 9)=\mathrm{n}
$$

Now, $\mathrm{M}(\mathrm{s} 4)<=0, \mathrm{M}(\mathrm{s} 5)>=\mathrm{n}, \mathrm{M}(\mathrm{s} 9)>=0$ (YES, the channel is empty - s4)
2. $\mathrm{M}(\mathrm{s} 3)>=1$ (i.e. Sender is Inactive)

Combining invariants i4 and i6 (Sender Inactive s3 + termination of messages - s6) together we get:
$[\mathrm{M}(\mathrm{s} 6)+\mathrm{M}(\mathrm{s} 12)+\mathrm{M}(\mathrm{s} 11)-\mathrm{M}(\mathrm{s} 3)=0] \rightarrow \mathrm{M}(\mathrm{s} 3)>=\mathrm{M}(\mathrm{s} 6)>=1$

