
 1

CIS 525 Software Development of Parallel and Distributed Systems

TEMPORAL LOGIC

In Petri Nets we can prove system properties, such as deadlock, liveness, after first building a PN
model of a system at certain level of abstraction.

For concurrent programs we want to be able to assert properties of processes and relate them to
various states during the processes execution (without modeling state changes). Temporal logic
provides this capability (Lamport 1980, Manna and Pnueli 1981, Kniiger 1987).

Temporal logic specifications are able to relate properties to state sequences associated with a
concurrent program’s execution. This gives us a means to asset both safety and liveness properties
(two types of correctness properties)

Safety properties – program never does something bad (freedom from deadlock, mutual exclusion)

Liveness properties – assert that program will eventually do something good (example: message
sent is eventually received, termination)

Fairness – helps to determine when competing events will occur (weak fairness and strong
fairness)

Weak fairness – events that always are ready to be executed will eventually be executed

Strong fairness – events that are infinitely often become ready for execution will eventually be
executed.

LOGIC-BASED SPECIFICATION FOR SYSTEMS

Temporal operators = take into account the time-dependent nature of truth values.

□ Always operator (□P always true in any state)
◊ Eventually operator (◊P ≡ ¬ (□¬P) = P is not always false)
О Next time operator
U Until operator

Examples: (of temporal logic statements)

1> □(P→◊Q) it is always true that if P is true in the current state, then Q will eventually
become true (Q is true either now or in some future state)

 2

(This may correspond to the liveness property that “if a message is sent, it will eventually
be received”)

2> □(A→ ОB)whenever A is true, B will become true immediately after that
3> □(A→¬B� ОB) whenever A is true then B will be false but it will become true

immediately thereafter
4> P U Q either P is true in the current state or P will be at least until first time that Q

becomes true.

USING TEMPORAL LOGIC AS A SPECIFICATION MODEL:

1> Identify a set of system properties (objective).
2> Formalize the properties using the temporal logic notation. Properties themselves become

the model.(serious weakness comparing with PNs)
3> Temporal logic is the most effective in specifying those system properties identified by a

system developer or analyst.

WHERE WAS TEMPORAL LOGIC APPLIED

a> Program synthesis as a way to specify formally those properties that drive a particular

synthesis procedure.
b> Program analysis – to specify formally those properties to be checked by an analysis

procedure.

MODEL CHECKING

 Automated Program Analysis Technique that uses temporal logic → checks validity of temporal
logic formulas for finite-state concurrent programs (Clatke, Emerson, Sistla 1986).

a> Use a BDD (Binary Decision Diagram) to represent state space symbolically; adopted
successfully to handle the analysis of digital circuits with very large state spaces (Burch et
al. 1980).

b> Karam and Buhr (1990, 91) → developed a temporal logic-based specification language to
identify the behaviors of concurrent programs expressed in the ADA; these behavior
specifications are then used in various analysis algorithms (example: deadlock analysis→
automatic theorem prover technique is used)

c> Temporal logic formulas do not give us info about a single only, the complexity of the

analysis depends on the type of state sequences being considered:
 linear-time temporal logic – time has linear structure; each state has one successor

state
 branching-time temporal logic – time has linear structure; a state may have more

than one successor state.

 3

Example: Binary semaphore; Karp; 1984

Goal: To specify the requirements of a semaphore operations P and V. V operation sets to 1 the
value of the semaphore variable. P operation sets to 0 the value of the semaphore variable.

p ∈ P: a process p has called a P operation and is waiting for the operation to be completed

p ∈ V: a process p has called a V operation and is waiting for the operation to be completed.

s: value of the semaphore variable (1 or 0)

The following properties must be true if we are to have a correct semaphore implementations:

1> Property 1: A P (safety property) operation must not complete if the semaphore has value
0 (semaphore is “unavailable”) and the value never changes. Otherwise, a user of the
semaphore might violate mutual exclusion on a resource guarded by the semaphore.

 p ∈ P � □(s=0)→□ (p∈P)

2> Property 2: only a V operation can set the semaphore value to 1:

 □(for all p, p ∉ V) �(s=0)→□(s=0)

3> Property 3 (liveness property): A V operation must eventually be completed and in doing
so set the semaphore value to 1

 p∈V →◊(p ∉V � (s= 1)

4> Property 4 (fairness property): A process that has requested P operation will not be
indefinitely blocked if the semaphore value becomes 1 infinitely often. This is a fairness
property that is typically satisfied by implementing a semaphore with FIFo queue.

 p ∈ P �◊(s=1)→◊(p ∉ P)

REQUIREMENTS SPECIFICATIONS
FOR DISTRIBUTED SOFTWARE

• Properties characterizing the intended behavior of the software system.
• Elements of distributed systems that have to be supported:

- asynchronous execution (source of improved performance)
- non deterministic actions (choice)
- communication (with delay)

 4

Categories of models:

a> Process algebras, like CCS (Lin, 1991, process algebra tools)
CCS = communicating concurrent systems

b> Petri-nets – explicit means to specify parallelism among asynchronous activities; the non
deterministic selection of events, and synchronization.

c> Temporal logic – logic-based model; it asserts a set of properties for a system (without
explicitly modeling a system)

Figure 1

PROBLEM 3.5 PAGE 59, SHOL SHATZ’S BOOK:

Design
Algorithm

Requirements
specifications
model

Software design

Task partitioning 1> identification of processes
(cooperative program units)

Task allocation 2> allocation of processes to
processors

 V P
s є S

 V Q
 s є S

(V Q) � (V
Q)
s є S s є S

P

Q

V (P�Q)
s є S

 5

Figure 2

L= eventually P will be true �
 Eventually Q will be true
 Well, they may not be true at the same time

P= eventually P � Q will be true (this must be at the same time)

PROBLEM 3.4 PAGE 59, SHOL SHATZ’S BOOK:

a> True
b> Not true
c> True

PROBLEM 3.1 PAGE 57-58; SHOL SHATZ’S BOOK

t1, t2, t3 are concurrent transitions that can execute in any order.

Method 1: to make order of execution strictly defined for instance in order
t1 → t2 → t3

 6

Figure 3

Method 2: with inhibitor arcs

•

p1 p2

t2

t3

p4 p5
p6

p3

t1

 7

Figure 4

PROBLEM 3.2 PAGE 58 SHOL SHATZ’S BOOK:

Specification requirements:

A sender can hire any number of carriers to send a parcel to any of the receivers:
1> (a, A, α)
2> (a, A, β)
3> (a, B, α)
4> (a, B, β)
5> (a, C, α)
6> (a, C, β)
7> (b, A, α)
8> (b, A, β)
9> (b, B, α)
10> (b, B, β)
11> (b, C, α)
12> (b, C, β)

•

 p2

p3

t2 t3 t1

p1

A sender (a, b) 2x

A carrier (A, B, C) 3x

A receiver (α, β) 2x

Delivery system

 8

Figure 5

 s1 s2 c1 c2 c3 r1 r2

rts2
rtr2

rtr1

rtc3
rtc2rtc1

s1

s2

t21 t22 t23

t13
t12

t11 rts2

 c1s12

c2s12

 c3s12

c3

c2

c3

receiver sender carrier

rts1

rts1

