

PATTERNS IN COLORED PETRI NETS

N.A. Mulyar and W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{n.mulyar, w.m.p.v.d.aalst}@tm.tue.nl

April 15, 2005

ABSTRACT

Colored Petri Nets (CPN) is a graphical language, which is extensively used for modeling and
analysis of distributed systems with elements of concurrency. It has proven to be a good
platform for modeling of process-aware information systems, workflow analysis, design of
communication protocols, embedded systems, and distributed systems, etc. The challenge
that we undertake in this report is to document a set of 34 empirically gathered patterns in
Colored Petri Nets in the pattern format. The main goal of the CPN pattern catalog is to serve
as a source of sound solutions, proven by experience, for problems appearing during
modeling by means of CPN. Furthermore, the CPN patterns can be used as a domain
language for communicating problems and solutions. In order to help developers in selecting
a suitable pattern, we made classification of patterns and analyzed relationships between
patterns for easy navigation through the CPN pattern language.

2/109

TABLE OF CONTENTS

INTRODUCTION ... 4
CENTRAL CONCEPTS AND SCOPE... 5
PATTERN FORMAT.. 6
PATTERN 1: ID MATCHING ... 7
PATTERN 2: ID MANAGER .. 10
PATTERN 3: AGGREGATE OBJECTS .. 15
PATTERN 4: QUEUE .. 18
PATTERN 5: FIFO QUEUE... 21
PATTERN 6: LIFO QUEUE ... 22
PATTERN 7: RANDOM QUEUE... 23
PATTERN 8: PRIORITY QUEUE.. 24
PATTERN 9: CAPACITY-BOUNDING .. 29
PATTERN 10: INHIBITOR ARC.. 33
PATTERN 11: COLORED INHIBITOR ARC ... 38
PATTERN 12: SHARED DATABASE.. 40
PATTERN 13: DATABASE MANAGEMENT... 43
PATTERN 14: COPY MANAGER ... 47
PATTERN 15: LOCK MANAGER.. 49
PATTERN 16: BI-LOCK MANAGER ... 53
PATTERN 17: LOG MANAGER.. 56
PATTERN 18: BLOCKING STATE-INDEPENDENT FILTER... 58
PATTERN 19: BLOCKING STATE-DEPENDENT FILTER... 60
PATTERN 20: NON-BLOCKING STATE-INDEPENDENT FILTER.. 62
PATTERN 21: NON-BLOCKING STATE-DEPENDENT FILTER ... 64
PATTERN 22: TRANSLATOR... 66
PATTERN 23: ASYNCHRONOUS TRANSFER ... 68
PATTERN 24: SYNCHRONOUS TRANSFER.. 71
PATTERN 25: RENDEZVOUS.. 74
PATTERN 26: ASYNCHRONOUS ROUTER.. 77
PATTERN 27: ASYNCHRONOUS AGGREGATOR... 81
PATTERN 28: BROADCASTING.. 83
PATTERN 29: REDUNDANCY MANAGER .. 85
PATTERN 30: DATA DISTRIBUTOR.. 89
PATTERN 31: DATA MERGE ... 92
PATTERN 32: DETERMINISTIC XOR-SPLIT... 94
PATTERN 33: NON-DETERMINISTIC XOR-SPLIT ... 97
PATTERN 34: OR.. 99
CPN PATTERN RELATIONSHIPS ... 101
CLASSIFICATION OF CPN PATTERNS .. 104
RELATED WORK.. 106
FUTURE WORK.. 107
ACKNOWLEDGEMENTS.. 108

3/109

INTRODUCTION

Process-Aware Information (PAI) systems, i.e. systems that are used to support, control, and
monitor business processes, are typically driven by models of different perspectives, i.e.
process, organization, data, etc. In order to build a feasible model with help of a PAI system
(e.g. WFM software) efficiently, all dimensions of requirements put on the system from
process, data, resources and other perspectives, must be well understood. Developers,
working in the same domain, experience similar difficulties while solving the same kind of
problems. How to solve a problem, what are advantages and disadvantages of possible
solutions, which solution to choose, how to realize the selected solution – these all are the
questions, which every developer needs to answer. Since problems to be solved are often
non-unique, i.e. they recur in many systems, developers invest their time on solving a
problem and often reinvent already existing solutions.

A pattern language is one of the possible means to help developers in building their models
efficiently, while avoiding reinventing already existing solutions of problems, which are
common in the considered domain. Pattern languages are based on experience; they express
sound solutions for problems frequently recurring in a certain domain in a pattern format.
Knowing a problem underhand, a developer can look up a solution for the problem in the
pattern catalog, while spending less effort on the development and ensuring the soundness of
a solution.

Several steps have already been made in the direction of formalizing patterns in the workflow
domain. As such, significant milestones in the form of workflow patterns [1], workflow data
patterns [2], and workflow resource patterns [3] have been achieved. These pattern
languages address the process, data, and resources perspectives in isolation. Note however
that in a real system, the process, data, and resources perspectives interplay, thus
considering every perspective in isolation is not sufficient. As far as we know, no attempts
have been made to formalize the patterns combining several perspectives.

In this report, we focus on the patterns in the problem domain, where control flow and data
flow interplay. We selected Colored Petri Nets (CPN) as an implementation language, since it
allows modeling of data by means of colors on the top of classical Petri Nets (PN) suitable for
representing the behavioral logic of the control-flow. We conducted an explorative research,
based on the experts’ experience, analysis of existing models and literature, which resulted in
34 implementation patterns in Colored Petri Nets.

On the one hand, the patterns described in this report are implementation patterns, i.e. they
are mainly oriented to support model developers, working with CPN Tools, with sound
solutions for problems frequently recurring during modeling. Therefore, these patterns are
CPN language- specific. On the other hand, since CPN is a modeling language, which is often
used for design and modeling of dynamic systems with elements of concurrency, these
patterns can be also considered as design patterns, which grasp certain problems on the
level of model design and offer solutions visualized by means of CPN. Similar to the 23
design patterns of Gamma [4], which considered as "Elements of Reusable Object-Oriented
Software", CPN patterns also systematically name, motivate, and explain general design
problems. However, due to major differences in concepts of object-orientation and Petri Nets,
and validity in the CPN context, we will refer to the CPN patterns described in this report as
implementation patterns.

The remainder of this report is organized as follows. First, we introduce some basic concepts,
which we will be using in the description of patterns, and define the scope of the patterns in
the context of the Petri Nets. Then we introduce the pattern format, followed by the
description of the 34 identified implementation patterns. The series of presented patterns are
analyzed to identify the pattern relationships, which are visualized by means of the
relationship diagram. In order to reflect on pattern properties, patterns are divided into
clusters and classified by several criteria. Finally, related and future work is discussed.

4/109

CENTRAL CONCEPTS AND SCOPE

In this report, we use main concepts of Petri Nets, i.e. a transition, a place, and a token. We
apply concepts “event", "task", “actor” and "transition" interchangeably, as well as "token" and
its mapping on an “object”. We do not refer to the definition of an object from object-oriented
programming, but generalize it in such a way that by a token or “object” we can refer to any
of:

- Physical objects, i.e. a chair, a stool, a table, etc;
- Conceptual objects, i.e. policies, insurances, etc;
- Information objects, i.e. anything what can be manipulated by a human or a system

as a discrete entity [11].
Whenever a pattern operates with a specific type of objects, we will specify the type explicitly.

For gathering CPN patterns, we concentrate on discrete dynamic systems, which are systems
with a certain state in any moment of time and a sequence of events, which bring a system
from one state to another. The examples of discrete dynamic systems are distributed
databases, decision support systems, e-mail systems, business systems like factories,
transport companies, etc.

Discrete systems are made out of actors and objects. Actors are active components, which
consume and produce objects, which are passive components [11]. Actors can be machines,
humans, networks of other dynamic systems, etc.

A place is a location, where tokens reside. A place can be considered as a temporary or
persistent data storage, e.g. either containing a variable or a constant number of tokens at
any time.

Note that although major rules of classical Petri Nets (PN) are valid in these patterns, we
concentrate on the extensions of PN by color and time. By means of colors, data can be
specified, and we consider extension with time as a special color representing time1. Figure 1
visualizes the scope of the CPN patterns.

Hierarchical PN Timed PN Colored PN

Classical PN

Figure 1 The scope of implementation patterns in CPN

We selected CPN Tools, as an application supporting CPN. CPN Tools is based on Petri Nets
and has proven to be a good platform for modeling of process-aware systems. Using the
simulation engine of CPN Tools, the design patterns presented in this report, become
executable models.

1 From theoretical point of view time is not just another color, since it is global

5/109

PATTERN FORMAT

Patterns provide an effective way to document sound solutions. Since there are multiple
views on how to document the patterns and no consensus in the discussions related to
selection of a single pattern format has been achieved yet, we propose the following pattern
format, which in our opinion suits the best. Every CPN pattern adheres to the following pattern
format:

• Pattern name. This is an identifier of a pattern, which captures the main idea of what
the pattern does.

• Also known as. This section lines out the names, different from the Pattern name,

under which this pattern might be known to the audience.

• Intent: This section describes in several sentences the main goal of a pattern, i.e.

towards which problem it offers a solution.

• Motivation. This section describes the actual context of the problem addressed, and
why the underlined problem needs to be solved.

• Problem description. This section presents the problem addressed by the pattern. For

the sake of clarity, the problem is explained using a specific example. The majority of
the patterns contain examples, which are also illustrated by means of CPN diagrams.

• Solution. This section describes possible solutions to the problem. Note that a single

problem addressed by the pattern can be solved in several ways, depending on the
requirements and/or context in which the pattern is to be applied. Since multiple
solutions are possible, we consider every solution separately and for each of the
solutions we include an implementation sub-section.

o Implementation of Solution. This is a part of the solution section, which

illustrates how to implement the described solution in CPN Tools. The
implementation part shows not only the graphical representation of the
pattern with CPN, but also describes how to integrate this solution into the
example considered in the Problem description section. A solution may have
several implementations. The presented implementations may be not the only
way to implement a solution correctly. One should select an implementation
depending on the context, within which the pattern is to be applied. Note that
correctness of solution is not guaranteed if a tool different from CPN Tools is
used for implementation purposes.

• Applicability. This section describes the typical situations in which the pattern can be

applied.

• Consequences. This section outlines what are the possible advantages/

disadvantages of using the pattern. In case if the pattern supplies several solutions,
this section elaborates on the differences between them.

• Examples. This section lists one or several examples demonstrating the use of the

pattern in practice.

• Related Patterns. This section specifies relations of this pattern to other patterns.

6/109

PATTERN 1: ID MATCHING
ALSO KNOWN AS: REFERENCE

INTENT: to make identical information objects distinguishable

MOTIVATION:
In CPN a token can serve as a representation of an information object (i.e. a process
instance, a case, an item, etc). One place may contain multiple objects of the same type. In
some cases, it is necessary to compare an original value of an object with the value of the
same object after it has been modified. Because of modification, the values of objects change
and an object may loose its identity. Consequently, it becomes impossible to distinguish
which of the modified values corresponds to which of the original objects values.

PROBLEM DESCRIPTION:
Nets in Figure 2 and Figure 3 illustrate the problem of object matching. Initially two objects obj
of the same type T are present in place Start. These objects serve as an input for two
functions f1 and f2, which replace the values of processed objects with a randomly generated
integer number. After applying the functions, newly produced by functions f1 and f2 values
need to be matched in Match pair transition for every specific object.

Figure 2

Figure 2 illustrates accumulation of tokens in places Return f1(x) and Return f2(x) after
function f1 and function f2 were applied respectively. At the moment of modification, objects
lost their identity, i.e. it became impossible to distinguish which of the values present in place
Return f1(x) corresponds to which of the values in place Return f2(x).

Since CPN may consume tokens from a place in non-deterministic order, the value, produced
by function f1 for one object, can be matched with a value produced by function f2 for another
object. Such behavior is undesirable and may lead to inconsistency of results and
incorrectness of the matching operation whatsoever.

Figure 3

 7

SOLUTION:
In order to solve the problem of referencing to originally non-distinguishable identical objects,
couple every object with an identifier. The availability of identifiers makes it possible to
distinguish objects of the same type.

Implementation of Solution:
The list of instructions below describes how to implement the ID MATCHING pattern:

• Replace the type T associated with a type of objects you want to distinguish by a
multi-set TxID, where ID – is an arbitrary type selected to serve as an identification of
an object (for example, INT, STRING, etc.), in all uses, where identification of the
objects is relevant. For instance, in case of integers, the identifiers can be
represented as 1, 2, 3, etc. One could also use a complex/composite data type to
create an ID, for instance, of the following type (label, 1), (label, 2), etc.

• Correlate each of the identical objects with a unique identifier (see the pattern ID
MANAGER to address the problem of the ID uniqueness). For this, replace
inscriptions on the arcs, containing a variable representing an object, with a
correspondent pair (variable_of_object_type, variable_of_ID_type). For instance,
replace a variable x of type T by a pair (x,id), where id is of type ID.

• Whenever you need to match either an initial value of an object with a modified value
of the same object, or several values produced by multiple functions for the same
object, pass in addition to the value of an object an object identifier id. Usage of the
same identifier as a reference to the object will solve the problem of reference to the
objects and prevent them from loosing their identity after object modification.

• In order to match values corresponding to the same object, introduce transition Make
pair, which will be enabled only for the objects, identifiers associated to which match.
Note that if different variables, for instance id1 and id2, are used for representing
identifiers, it is possible to match them using a guard of transition performing the
matching, i.e. [id1=id2].

Figure 4 and Figure 5 show how to incorporate identifiers into the example presented in the
Problem description section. Note that in the initial marking, place Start contains two identical
objects obj that are coupled to integer identifiers 1 and 2. Together with identifiers, objects
form distinct pairs. Even if the value of an object changes, it will be possible to refer to the
object by means of an identifier associated to it. In Figure 4 two objects with identifiers 1 and
2 and corresponding values 74 and 52 are present in place Return f1(x), while place Return
f2(x) contains a token with an identifier 1 and value 77.

Figure 4

As Figure 5 illustrates, after firing transition Match pair, objects identifiers of which match, i.e.
with id=1, were consumed. Thus, the use of identifiers preserves an object from loosing its
identity.

 8

Figure 5

APPLICABILITY:
Apply this pattern to

- Refer explicitly to a specific object from a group of objects of the same type.
- Distinguish identical objects between each other.
- Structure and organize objects, based on referencing to identifiers rather then actual

object values.

CONSEQUENCES:
The ID MATCHING pattern helps in solving the problem of referencing to non-distinguishable
objects by means of object identifiers. However, this pattern does not guarantee that
identifiers used for referencing to objects are unique. The problem of ID uniqueness is
handled by the ID MANAGER pattern. In order to ensure that identifiers, used for referencing
a specific object, are unique, combine the ID MATCHING pattern with the ID MANAGER
pattern.

EXAMPLES:

• Several processes share the variables of the same type. In order to refer to the
variables, the processes use names of the variables as identifiers.

• A teacher gives lectures to the group of students. By the end of a course, students
must be evaluated: a student writes a paper, which is later discussed with the
teacher. When a student arrives for the discussion, the docent selects the student's
paper, using a name of the student as an identifier.

RELATED PATTERNS: this pattern can be combined with the ID MANAGER pattern to
ensure uniqueness of identifiers used for distinguishing identical objects.

 9

PATTERN 2: ID MANAGER
ALSO KNOWN AS: ID GENERATOR

INTENT: to ensure uniqueness of identifiers, used for distinguishing identical objects

MOTIVATION:
The ID MATCHING pattern solves a problem of distinguishing identical objects by assigning
an identifier to each of the objects, which need to be distinguished. However, it does not
guarantee that used identifiers are unique. Since CPN allows usage of multi-sets, where the
same object, together with an identifier associated with it, can be created multiple times, the
identical objects may be coupled to the same identifier, and thus become non-distinguishable.
This may lead to confusion, incorrectness of object matching operation and diminishing the
added value of the notion of identity whatsoever.

PROBLEM DESCRIPTION:
Figure 6 illustrates the problem of the ID uniqueness using an example from the
implementation section of the ID MATCHING pattern. Place Start contains two objects a and
b of the same type T, and each of them is coupled to an identifier 1. From the point of view of
correctness of the specification used in the considered net, no problem can be detected.
However, in the current marking both objects are associated with the same identifier. If to
refer to these objects only by means of their identifiers, these objects cannot be distinguished
due to non-uniqueness of the identifiers.

Figure 6

SOLUTION:
In order to ensure the uniqueness of identifiers, used for distinguishing identical objects, use
an ID manager. The ID manager ensures that only unique identifiers, i.e. one of its kind, are
generated. Optionally the ID manager may contain functionality for verification and control of
consistency of allocated identifiers.

The mechanism of the ID management covers several aspects, i.e. ID generation, verification,
and control of consistency. In general, it is sufficient to have the mechanism of ID generation
implemented. The operations of verification and control of consistency are optional.

The ID generation operation is responsible for generation of fresh ID’s. The ID approval
operation is responsible for examining if the fresh ID, supplied by the ID generator, has not
already been allocated. Finally, the control of consistency operation is responsible for storing
all generated ID’s, and keeping this storage up-to-date, i.e. inserting new ID’s and removing
returned ones.

 10

Implementation of Solution:

• The ID generation operation
Figure 7 illustrates the mechanism of ID's generation. Unique identifiers, produced by
transition Generate ID, are stored in place Fresh ID. Place Last ID keeps track of generated
identifiers, by storing the last produced one. Initially, it stores a token with an arbitrary integer
value, which will be incremented each time transition Generate ID fires. By memorizing the
last identifier, and its incrementing, the uniqueness of identifiers is achieved. Note that in the
diagram in Figure 7 identifiers of integer type are used, however any data type can be used
instead.

Figure 7 ID generator

• The ID verification
Figure 8 illustrates the mechanism of verifying the uniqueness of identifiers, supplied by the
ID generator. In order to provide identifiers to place Approved ID's, which were not yet
allocated, Solution 2 of the FILTER pattern is applied.

Place Fresh ID supplies a selected id to transition Approve ID, which checks if this id has not
been already allocated. Transition Approve ID takes as an input a new id supplied for
checking, and a list of the allocated identifiers lid stored in place Existing ID's. This transition
checks if the id is an element of the list of the existing identifiers. This is done by means of the
transition guard, containing the function elt():

fun elt(x,[])=false | elt(x,y::z) = if x=y then true else elt(x,z);

The id is approved as unique, if it is not an element of the list lid. In this case the id is also
added to the list of ID’s lid in order to keep the list up-to-date, and at the same time the id
becomes available at the place Approved ID’s. From this moment, the identifier id is available
for coupling with an object.

Figure 8 ID verification

 11

• The ID consistency control

The mechanism of consistency control consists of two operations: inserting new ID’s and
removing ID’s, which returned, for instance, because of the object destruction, to/from the list
of existing identifiers. The insert operation was presented in Figure 8. Figure 9 illustrates the
operation of deleting the returned identifier from the list of the allocated identifiers.

Transition Destroy ID takes the current list of used identifiers lid and removes returned
identifier id using the following function:

fun del(x,y::z) = if x=y then z else y::(del(x,z));

Figure 9 ID deletion

The consistency manager, combining both operations of inserting, deleting, and verification of
identifiers is presented in Figure 10. Note that allocated identifiers are aggregated into the list,
for which the AGGREGATE OBJECTS pattern has been applied. In addition, one can apply
the QUEUE pattern to keep identifiers in the list in the strictly specified order.

Figure 10 ID consistency control

The ID manager, combining all above-discussed functionality is presented in Figure 11. Note
that in generic case, the ID manager performs only generation of identifiers, and the rest of
functionality is optional and can be used as a supplement for identifiers’ reallocation
purposes.

 12

Figure 11 ID manager

Figure 12 shows how to incorporate the ID manager pattern into the example described in the
Problem description section. Note that only functionality of generator of the ID manager is
used, because (re-) allocation of identifiers is not required in this example.

In place Start objects a and b are originally stored without identifiers. Transition t1 takes as an
input an object from place Start and couples it to an identifier id provided from Fresh ID place.

Figure 12

APPLICABILITY:
Apply this pattern in combination with the ID MATCHING pattern to

- Guarantee the uniqueness of identifiers used for distinguishing identical objects.
- Keep track of allocated identifiers.
- Ensure the consistency of allocated identifiers and allow reallocating the identifiers,

which were returned and are not used in a model any more.

CONSEQUENCES:
The ID MANAGER pattern ensures uniqueness of identifiers used for referencing objects of
the same type, when combined with the ID MATCHING pattern. In addition, this pattern
solves the problem of data consistency, which might appear by inserting new or removing old
identifiers.

Note that in its solution, this pattern uses BLOCKING STATE-DEPENDENT FILTER pattern
in combination with the AGGREGATE OBJECTS pattern.

EXAMPLES:

• A tax office handles requests of visitors. When visitors arrive to the tax office, they
receive a ticket with a number, which specifies the place of a visitor in the queue. A

 13

ticket number must be unique in order to avoid several visitors being handled by the
same tax officer concurrently.

RELATED PATTERNS: this pattern uses the BLOCKING STATE-DEPENDENT FILTER
pattern and the AGGREGATE OBJECTS pattern in its solution.

 14

PATTERN 3: AGGREGATE OBJECTS
ALSO KNOWN AS:

INTENT: to allow manipulation of a set of information objects as a single entity

MOTIVATION:
In many cases, it is natural to represent an information object (e.g., an order, a car, a
message) as a single entity, i.e. there is a one-to-one correspondence between objects in a
“real system” and tokens in the model. However, sometimes it is necessary to aggregate
objects into one token, thus referring to the collection of objects as a single entity.

PROBLEM DESCRIPTION:
Figure 13 illustrates the problem addressed by this pattern. In the original model, place object
is of type T and transitions put and get add and remove tokens from this place. Note that each
token corresponds to an object.

Figure 13

Suppose that it is necessary to perform an operation from the following list:

- Count the number of objects in place object;
- Select an object from place object with some property relative to the other objects

(e.g., the first, the last, the smallest, the largest, the cheapest, etc.);
- Modify all objects in a single action (e.g., increase the price by 10 percent);
- (Re-) move all objects in one batch (e.g., remove a set of outdated files, items, etc. at

once, rather then one by one).

None of these operations is possible in the diagram shown above. Note that it is only possible
to inspect one token at a time and this is a non-deterministic choice. Moreover, this choice
can be limited by transition guards and arc inscriptions, but it is memory-less and not relative
to the other tokens in the place. This makes it very difficult or even impossible to realize the
mentioned aspects.

SOLUTION:
In order to allow manipulation of a set of information objects as a single entity, aggregate the
objects into a single token of "collection type".

Implementation of Solution:
The list of instructions below describes how to implement the AGGREGATE OBJECTS
pattern (see Figure 14).

• Modify the type T of place objects, where multiple objects locate, to the collection type
LT. In this example the collection type list is chosen: "color LT = list T;"

• Replace arcs between transitions put and get and place objects by bi-directional arcs
with the following inscriptions. An arc which supplies an object to the collection has
an inscription x::l, which adds an object x of type T to the list l. Return the current list l
back to transition put. Similar, in order to get an object from the collection use x::l, and
return the changed list. The described behavior represents LIFO (last-in-first-out)
ordering.

 15

Figure 14 Aggregating objects into a list

By introducing a collection type, it becomes possible to refer to the collection of objects as to
a single entity and perform operations on multiple objects contained in the collection at once.
Several examples in Figure 15 and Figure 16 show how to implement some operations, from
the ones mentioned in the Problem description section, by extending the net presented in
Figure 14.

Figure 15 shows how to calculate the size of the collection, i.e. number of objects the
collection contains. Note that there is always precisely one token in place objects
representing all objects.

Figure 15 Defining the size of the collection

Transition count takes the current list of objects and sends the size of the list to place Number
of objects. Note that a function size(l) for determining the size of the collection is predefined
and available in the CPN Tools.

It is also possible to select an object from place objects with some property relative to the
other objects. For example, the object represented with the first name (i.e., lexicographical
order) can be obtained by transition select as follows in Figure 16.

Figure 16

 16

Function first selects the right object while function remove is used to remove the object.

fun first(x::l : LT) = f(x,l) | first([]) = "null";

fun remove(x,[])=[] | remove(x,y::l) = if x=y then l else y::remove(x,l);

In a similar way, it is possible to modify all objects in a single action (for instance, increase the
price by 10 percent) and to remove all tokens (simply by returning a token with a value []).

APPLICABILITY:
Apply this pattern to

- Organize multiple objects into a collection.
- Perform an operation on a group of objects or the whole collection at once.

CONSEQUENCES:
In principle, this pattern is not concerned with the order in which tokens are taken from the
collection. The example used in the implementation section uses last-in-first-out ordering (see
LIFO QUEUE). Nevertheless, if the problem of ordering is relevant, one should apply an
extension of this pattern by the QUEUE pattern, or one of its specializations.

Note that although some of the functions to manipulate the collection of objects are already
predefined in CPN Tools, applying special kinds of operations requires writing corresponding
function(s) from scratch.

EXAMPLES:

• The salary administration of a university divided employees in different groups:
students, PhD students, professors. All PhD students got a salary increase of 10%.
The salary administration does not need to adjust the salary slips for every PhD
student individually, but does it at one-step by increasing the salary of the whole
group.

• A set of the documents is stored in a file for organization purposes. In such a way it is
easy to take a whole file or select a group of the documents and send them for
processing elsewhere, keeping the documents structured and centralized.

RELATED PATTERNS: this pattern is extended by the QUEUE pattern.

 17

PATTERN 4: QUEUE
ALSO KNOWN AS:

INTENT: to allow manipulation of the queued objects in a strictly specified order

MOTIVATION:
In many systems, there are buffers where a variable number of objects are needed to queue
in-between two steps in the process. This pattern assumes an unbounded queue. The
queued objects need to be placed in the queue and retrieved according to different queuing
policies. By exchanging one policy with another, it is possible to obtain the desired ordering of
the buffered objects.

PROBLEM DESCRIPTION:
Assume that a collection of objects in form of a queue is given, and that it is necessary either
to add an object to the collection or select an object from the collection and remove it from the
queue. The order in which the objects are being added/removed to/from the collection may
depend on the properties of an object (e.g., age, weight, etc.), the location in the queue
(FIFO, LIFO), or the timestamp.

SOLUTION 1:
In order to enforce elements of a queue to move in the strictly specified order, such that
several queued elements can be moved in one go, extend the solution of the AGGREGATE
OBJECTS pattern. The objects are stored in a list, and added and removed from the list
based on the predefined ordering algorithm.

Implementation of Solution 1:
If objects to be queued are of type T, then the type of place queue is LT. This is a list type
"color LT = list T;". In this example, objects are sorted in the order of arrival (see the FIFO
QUEUE).

Figure 17

Transition put adds an objects x to the end of the list l in with help of the concatenation
function: l^^[x]. After the object x is added, the updated list is returned as an input to the
transition put. Transition put removes the first element of the list x::l and puts an updated list
back to the queue place.

By changing the arc inscriptions, it is easy to obtain last-in-first-out policy, as it is shown in the
implementation of solution of the AGGREGATE OBJECTS pattern and the LIFO QUEUE
pattern respectively.

SOLUTION 2:
In order to enforce elements of a queue to move in the strictly specified order, such that every
queued element is distinguished separately and represented by a separate token, augment
tokens with two numbers (i.e. dynamic queue bounds), which keep track of objects
manipulation on the basis of predefined ordering algorithm.

 18

Implementation of Solution 2:
For implementing Solution 2, use two variables pointing at the queue bounds, i.e. the relative
to the moment of insertion in the queue position of the first and the last elements. When
adding a new element to the queue, increment the upper bound; when removing an element
from the queue increment a lower bound. In this way, by using a lower/upper bound one can
refer to the first/last element placed in the queue.

In Figure 18 every object x is coupled to a number. Variables a and b keep the track of
elements in the queue, i.e. variable a stores the position of the first element stored in the
queue, while variable b points to the last added element. As soon as a new element added to
the queue, the value of b increases by 1, thus moving the pointer to the last element. When
an element should be removed from the queue, the element with position a is supplied (the
first element of the queue) to transition get. After the object is taken, variable a is incremented
to point to the beginning of the queue.

Figure 18

SOLUTION 3:
In order to enforce elements of a queue to move in the strictly specified order, such that every
queued element, which consists of an objects and the object identifier, is distinguished
separately and represented by a separate token, introduce a sorted collection of object
identifiers, and apply the ID MATCHING pattern to define a queue element to be taken first.

Implementation of Solution 3:
For implementing Solution 3, create a place Identifiers queue, where collection of object
identifiers will be stored. In order to maintain ordering of objects by means of identifiers, sort
identifiers according to a desired policy, i.e. FIFO, LIFO, random, etc. When adding a new
element in the queue Queued elements, place the identifier of an object to the list of
identifiers. Note that in this example, the identifiers are added to the tail of the list, in order to
achieve the first-in-first-out behavior.

To retrieve elements from a queue, take an identifier from the top of the list, and by applying
ID MATCHING pattern retrieve the element with the same identifier from the queue.

 19

Figure 19

APPLICABILITY:
Apply this pattern to

- Ensure strict ordering of objects, while inserting or removing them from the collection.

CONSEQUENCES:
The QUEUE pattern presents three solutions, each of which can be applied for managing the
order of objects, in which they were inserted/removed to/from a certain place. Although the
first solution is more flexible, it hides the behavior inside the functions. In its turn, the second
solution provides less flexibility and has more complex diagram. However, it captures the
behavioral logic in the diagram structure itself and does not encapsulate the ordering
functionality into functions. The third solution captures the flexibility of the first solution and
behavioral logic of the second solution.

In contrast to the second solution, which allows pointing only on the first and the last elements
of the queued objects, the third solution provides more flexibility in defining the order to
withdrawing of elements from the queue and similar to the first solution can be realized by
first-in-first-out, last-in-last-out, or other scheduling policy.

The selection of the solution depends on the context, within which the pattern needs to be
applied, and whether it is necessary to distinguish objects as separate tokens (second and
third solution) or being able performing operations on several objects simultaneously (first
solution).

This pattern is a generic representation of the queue management; the specializations of this
pattern, addressing a specific ordering policy, are described in the FIFO QUEUE, LIFO
QUEUE, and RANDOM QUEUE correspondingly.

In this pattern, the ordering algorithm is fixed either by functions or by the net structure, so
that all elements of a queue are treated in a uniform way. In some situations, there is a need
to make ordering of objects more flexible and responsive on certain object properties, i.e. age,
weight, timestamp, etc. The mentioned problem is addressed by the PRIORITY QUEUE
pattern, which is a special type of QUEUE.

EXAMPLES:

• The city hall handles requests of citizens. In order to keep the fair waiting time,
visitors that arrived first are served first.

• In order to rent a house, people register in the housing agency. Based on the date of
an application, the (FIFO) order in the waiting queue is defined.

RELATED PATTERNS: this pattern uses the AGGREGATE OBJECTS pattern in Solution 1
and ID MATCHING pattern in Solution 2. The PRIORITY QUEUE, FIFO QUEUE, LIFO
QUEUE, RANDOM QUEUE patterns are specializations of this pattern.

 20

PATTERN 5: FIFO QUEUE
ALSO KNOWN AS: FIRST-IN-FIRST-OUT

INTENT: to allow manipulation of objects from the collection in a strictly specified order, such
that an object, which arrived first, is consumed first

MOTIVATION:
The QUEUE pattern allows a variable number of objects to queue in-between two steps in the
process, providing the means for manipulation of objects in a strictly specified order. As it was
mentioned in the QUEUE pattern, there are many scheduling policies, according to which
manipulation of queued objects can be done. In some situations, there is a need to retrieve
objects from the queue in the order of arriving.

PROBLEM DESCRIPTION:
Assume that a collection of objects in form of a queue is given and that it is necessary either
to add an object to the collection or select an object from the collection and remove it from the
queue, ensuring that an object, which arrived first, is retrieved first.

SOLUTION:
In order to enforce elements of a queue to move in the order of arrival, use a specialization of
Solution 1 of the QUEUE pattern. Add new elements to the tail of the list, where the queued
elements are stored, and remove element from the head of the list.

Implementation of Solution:
If objects to be queued are of type T, then the type of place queue is LT. This is a list type
"color LT = list T;".

Figure 20

Transition put adds an objects x to the end of the list l in with help of the concatenation
function: l^^[x]. After the object x is added, the updated list is returned as an input to the
transition put. Transition put removes the first element of the list x::l and puts an updated list
back to the queue place. In this ways objects arrived first are retrieved first.

APPLICABILITY:
Apply this pattern to

- Ensure strict ordering of objects, while inserting or removing them from the collection,
so that an object arrived first is retrieved first.

CONSEQUENCES:
The FIFO QUEUE pattern is a specialization of the QUEUE pattern, applied in situation when
multiple objects are aggregated into a collection, which is sorted in the order of arrival.

EXAMPLES:

• The city hall handles requests of citizens. In order to keep the fair waiting time,
visitors which arrived first are served first.

• In order to rent a house, people register in the housing agency. Based on the date of
an application, the (FIFO) order in the waiting queue is defined.

RELATED PATTERNS: this pattern is a specialization of the QUEUE pattern.

 21

PATTERN 6: LIFO QUEUE
ALSO KNOWN AS: LAST-IN-LAST-OUT

INTENT: to allow manipulation of objects from the collection in a strictly specified order, such
that the mostly recently added object is retrieved first

MOTIVATION:
The QUEUE pattern allows a variable number of objects to queue in-between two steps in the
process, providing the means for manipulation of objects in a strictly specified order. As it was
mentioned in the QUEUE pattern, there are many scheduling policies, according to which
manipulation of queued objects can be done. In some situations, after placing objects into a
queue there is a need to retrieve the mostly recently added object first.

PROBLEM DESCRIPTION:
Assume that a collection of objects in form of a queue is given, and that it is necessary either
to add an object to the collection or select an object from the collection and remove it from the
queue, ensuring that an object, last added is the first one to retrieve.

SOLUTION:
In order to enforce elements of a queue to move in the order of arrival, use a specialization of
Solution 1 of the QUEUE pattern. Add a new object to the head of the object list, where the
queued elements are stored, and remove an object from the head of the list.

Implementation of Solution:
If objects to be queued are of type T, then the type of place queue is LT. This is a list type
"color LT = list T;".

Figure 21

Transition put adds an objects x to the head of the list l, i.e. x::l. After the object x is added,
the updated list is returned as an input to the transition put. Transition put removes the first
element of the list x::l and puts an updated list back to the queue place. In this way, the most
lately arrived object is retrieved first.

APPLICABILITY:
Apply this pattern to

- Ensure strict ordering of objects, while inserting or removing them from the collection,
so that an object arrived first is retrieved first.

CONSEQUENCES:
The LIFO QUEUE pattern is a specialization of the QUEUE pattern, applied for manipulation
of objects aggregated into a collection.

EXAMPLES:

• Inventory accounting in which the most recently acquired items are assumed to be
the first sold

RELATED PATTERNS: this pattern is a specialization of the QUEUE pattern

 22

PATTERN 7: RANDOM QUEUE
ALSO KNOWN AS:

INTENT: to allow manipulation of objects from the collection, such that objects are added to
the queue in any order, and an arbitrary object is consumed from it

MOTIVATION:
The QUEUE pattern allows a variable number of objects to queue in-between two steps in the
process, providing the means for manipulation of objects in a strictly specified order. In some
situations, the order in which objects are inserted in the queue is out of importance, since an
arbitrary object from the queue needs to be consumed.

PROBLEM DESCRIPTION:
Assume that a collection of objects in form of a queue is given, and that it is necessary either
to add an object to the collection or select an arbitrary object from the collection and remove it
from the queue.

SOLUTION:
In order to enforce elements of a queue to move in the order of arrival use a specialization of
Solution 1 of the QUEUE pattern. New objects are added either to a tail or to a head of the
list, where the queued elements are stored, and randomly removed from the it.

Implementation of Solution:
If objects to be queued are of type T, then the type of place queue is LT. This is a list type
"color LT = list T;".

Figure 22

Put objects into the list in any order, i.e. either to the head of the list x::l, or to the tail of the list
l^^[x]. In Figure 22 objects are added to the head of the list. Transition get picks the random
element of the list:

fun rand(l) = List.nth(l, discrete(0,size(l)-1));
and then puts an updated list, i.e. the list without withdrawn element, back:

fun rest(x, h::l)= if x=h then l else h::rest(x,l);

APPLICABILITY:
Apply this pattern to

- Ensure add elements into the queue in any order, but retrieve an arbitrary element,
i.e. not necessary the first or the last element of the queue, from the queue.

CONSEQUENCES:
The RANDOM QUEUE pattern is a specialization of the QUEUE pattern, applied in situation
when multiple objects are aggregated into a collection.

EXAMPLES:

• In order to rent a house, a person must subscribe in a housing agency. After
subscription, registered members may react on the available houses. A notary of the
housing agency peeks randomly a person who will get the house.

RELATED PATTERNS: this pattern is a specialization of the QUEUE pattern

 23

PATTERN 8: PRIORITY QUEUE
ALSO KNOWN AS:

INTENT: to allow manipulation of objects from the collection in the order of the objects' priority

MOTIVATION:
In many systems, as solution 1 of the QUEUE pattern describes, there are buffers where a
variable number of objects, aggregated into a collection, are queued in-between two steps in
the process. The order in which the objects are being added/ removed to/from the collection
may involve object properties, thus be based on the priority associated with an object.

PROBLEM DESCRIPTION:
Assume that a collection of objects in form of a queue is given, and that it is necessary either
to add an object to the collection or select an object from the collection and remove it from the
queue. The QUEUE pattern solves this problem by capturing predefined ordering algorithm
into the net structure and functions. Specializations of the QUEUE pattern treat all objects in
uniform way, i.e. no matter what the value of an objects is, this object is retrieved only when
its turn comes (first-in-first-out, last-in-first-out, etc). However, they do not allow the order of
objects in a queue vary depending on certain object properties, i.e. the value of an object, or a
priority associated with it.

SOLUTION:
In order to allow manipulation of objects in the order, defined by object-specific properties,
determining the object priority, use the priority queue. The priority queue is a specialization of
Solution 1 of the QUEUE pattern. When accessing objects in a queue, the object with the
highest priority is removed first. A priority queue has a largest-in, first-out behavior.

Assumptions:

1) Sorting of the queue based on the objects' priority is done upon objects' insertion.
See corresponding implementation alternatives 1 and 2.

2) Sorting of the queue based on the objects' priority is done upon objects' retrieval. See
corresponding implementation alternatives 3 and 4.

3) Sorting of the queue based on the objects' priority after objects' insertion but before
objects' retrieval.

Implementation 1 of Solution 1
Sort the collection of the queued objects upon insertion in the order of ascending priority.
Define the priority of an object, based on the object’s value compared to the values of objects
already stored in the collection. First element of the list, i.e. an object with the highest priority,
is retrieved first.

Assumption: initially, the collection of objects stored in place Objects, is either empty or
sorted.

Figure 23

 24

• Place Objects is of type LT. This is a list type "color LT = list T;", which collects

objects of type T. In this example, objects are sorted in the order of the highest
priority, i.e. an object with the highest priority is withdrawn from the queue first. In this
example, from two objects of integer type the object with the highest priority is the
one, whose value is bigger (see function higherPriority).

• Objects stored in place Objects are stored in ascending order, i.e. the first element

has the largest value, while the last element – the smallest value. Transition put
initially defines the priority of the new object and inserts it in the queue, ensuring that
the queue is sorted properly (see function pinsert()). In its turn, transition get removes
an object with the highest priority, and correspondingly the largest value, from the
queue by taking the first element of the collection x::l.

Implementation 2
Sort the collection of the queued objects upon insertion in the order of ascending priority. In
contrast to the implementation 1, the object’s priority is not calculated based on the value
associated with an object, but is passed as a separate value coupled to the corresponding
object. Since the collection of the queued elements is composed from pairs (obj_value,
priority_value), the second element of a pair, i.e. priority, is a parameter for sorting. Similar, a
first element that will be retrieved from the queue is an element with the highest priority.

Assumption: initially, the collection of objects stored in place Objects, is either empty or
properly sorted.

Figure 24

Figure 24 shows that initially three pairs (5,1), (6,3) and (2,7), where first the element is an
object’s value, and the second element is the priority, are supplied to transition put.

• Transition put takes a pair and sorts the queue using the function sort() :

 sort (x,p) [] = [(x,p)] | sort (x,p) ((y,q)::queue) =
 if higherPriority (p,q) then (x,p)::(y,q)::queue else (y,q)::(sort (x,p) queue);

• The collection of objects l is sorted. Transition get takes the first pair from a list
(x,prio), which is a pair with a highest priority prio, and returns back updated list l.

Implementation 3
Insert objects in the queue in any order, such that objects stored in the collection are not
sorted. Sort the collection, based on the value of an object, upon retrieval.

In this example, a merge-sort algorithm is used for sorting the list in the descending order,
however any other sorting algorithm may be used instead.

 25

Figure 25

• Insert objects into the collection l in any order, i.e. either at the beginning x::l or at the
end of the list l^^[x].

• Add a transition guard [templ=sort(l)] to transition Get, the result of evaluation of
which is assignment of the sorted list l to a new list templ. The first element of this list,
i.e. an object with the smallest value hd templ, is passed to place Out, while the rest
of the list tl templ is put back to place Objects.

Alternatively, one could avoid referring to the tail and head of the list by using the following
construct:

Figure 4

Implementation 4
Insert pairs of objects and priorities associated with them objects in the queue in any order.
Sort the collection, based on the value of object priority, upon retrieval.

Pairs of objects and priorities associated with them are stored in pairs in the list L in any
order. However, when an object needs to be retrieved from the collection, the list L is sorted
based on the value of the priority element. This implementation, similar to implementation 2,
uses pairs of elements, where priority of an object is not defined upon the value of an object,
but is already given; and similar to implementation 3 uses sorting upon retrieval with help of
the merge-sort algorithm. Note that any other sorting algorithm can be used instead.

Figure 26

The implementation of the merge algorithm function is the same as in Implementation 3, with
only difference that value sortpair is used instead of value sort.

val sortpair = mergesort TxPrio.lt;

 26

In addition, a new sorted list SL is created. Since this list consists of pairs, only the first
element of a pair, i.e. the value of an object is passed to place Out, i.e. #1 (hd SL).

In case if the whole pair, i.e. an object together with its priority, should be passed to place
Out, use the diagram structure shown in Figure 26 and an arc inscription hd SL
correspondingly.

Figure 27

Implementation 5
Objects are handled in the FIFO (first-in-first-out) order. Sorting of objects is neither done
upon insertion nor upon retrieval. In contrast to all considered implementations, sorting here is
done externally, i.e. with help of transition Sort. This transition can fire when a new object is
added to the collection, because of which the ordering balance in the collection is lost.

Figure 28

This implementation alternative is "non-safe", given that there is no strict ordering of firing
transitions Sort and Get. In an ideal case, transition Sort must fire before transition Get in
order to ensure that all elements of the collection are sorted and an element with a higher
priority is taken first. However, it might happen the other way around. If a new element is
added to the top of the list, and its priority is lower than of the preceding element, it should be
placed by transition Sort in the correct location. Assume, that transition Get fired first, before
the list was sorted. In this case, a newly arrived element with a lower priority will be consumed
and the element with the highest priority will stay in the collection.

APPLICABILITY:
Apply this pattern to

- Ensure retrieval from a queue in order defined by object priorities, which are a-priori
predefined or defined based on object properties like price, weight, age, etc.

- Sort a queue of objects in the order of ascending/descending priorities for
structuring/organization purposes.

To apply this pattern, one should define how object priority is defined and the moment of
sorting, i.e. upon insertion, when inserted, or upon retrieval from the queue respectively.

CONSEQUENCES:
The priority queue pattern allows manipulating of objects in the order, defined by object-
specific properties. Note that to make this possible, this pattern makes use of a sorting
algorithm, hidden inside of the functions. There are many sorting algorithms developed up

 27

until now, which differ in efficiency and speed of sorting. We leave selection of the sorting
algorithm out of the scope of this pattern, since this information can be found elsewhere.

Implementations 1 to 4 are safe in the sense that they ensure the retrieval of objects in the
order of the specified priority. Implementation 5 in contrast to other implementation
alternatives, also performs sorting of objects, however is not safe, since it cannot guarantee
that the sorting will be done on the right moment, i.e. preceding the object retrieval.

EXAMPLES:

• The service desk of a company that distributes coffee-machines, handles complaints
of clients. Every day there is a list of urgent complaints received, which must be
solved within the same day. However, if too many complaints are received at the
same day, and the service desk is not able to handle them all in time, they are
scheduled as tasks with the highest priority for the next day.

RELATED PATTERNS: this pattern is a special case of the QUEUE pattern

 28

PATTERN 9: CAPACITY-BOUNDING
ALSO KNOWN AS: FEEDBACK, ANTI-PLACES

INTENT: to prevent over-accumulation of objects in a certain place

MOTIVATION:
Originally, places in CPN are unbounded and may accumulate a non-limited number of
tokens. In some situations, for instance for modeling of a network buffer, it is necessary to
limit the number of tokens, which a certain place is allowed to contain.

PROBLEM DESCRIPTION:
In the net presented in Figure 29 different resources are stored in place Objects, which are
accessed by transitions Put and Get. Assume that it is necessary to prevent the over-
accumulation of the resources due to the limited size of the storage. Let the storage size be
N. Unfortunately, in such a construct it is not possible to limit the capacity of place Objects
since such a feature is not incorporated in the concept of place in CPN.

Figure 29

SOLUTION 1:
In order to prevent over-accumulation of information objects in a certain place, introduce an
anti-place, i.e. a place corresponding to an original place, which in combination with the
original place, and its incoming/outgoing transitions forms the feedback construct.

We talk about feedback if two transitions Put and Get depend on each other in such a way
that Get both consumes an output token from Put and produces an input token for Put.

Figure 30

Implementation of Solution 1:
The list of instructions below describes how to implement the Solution 1 of the CAPACITY-
BOUNDING pattern:

• Add a new place (Anti-place) with the type “E”. Note that you may also use a
multi-set type, which allows having multiple instances of tokens of the same type.

• Add in the initial marking of Anti-place N tokens “N`e”, where N – is a bound of
the original place Objects. In this particular example N=2, which means that at
most two tokens can be present in place Objects at once.

 29

• Inverse the outgoing and incoming transitions of place Objects and connect them

to Anti-place, so that incoming transition of Objects corresponds to the outgoing
transition of Anti-place and other way around.

• Note that this solution incorporates the BLOCKING STATE-DEPENDENT
FILTER, which examines the state of an anti-place, and based on the token
availability in the anti-place, defines whether it is allowed to add a new object.

Figure 31

SOLUTION 2:
In order to prevent over-accumulation of objects in a certain place, introduce a counter-place,
which will count how many objects are present in the place. Use a BLOCKING STATE-
DEPENDENT FILTER to examine a state of the counter and prevent adding of new objects if
the counter reached the maximal place capacity.

Implementation of Solution 2:
The list of instructions below describes how to implement Solution 2 of the CAPACITY-
BOUNDING pattern:

• Add a new place Counter with the type INT, which will count how many objects
are accumulated in place Objects.

• Connect the counter to the transitions Put and Get, which add and remove
objects from place Objects. When a new object is added to the Objects the
counter will be incremented n+1. When an object is removed from place Objects,
the counter will be decremented, and thus stay up-to-date.

• Declare the value N, to represent a bound of the maximal capacity of place
Objects. In this particular example N=2, which means that at most 2 tokens can
be present in place Objects at once.

• Add a transition guard [n<N] to transition Put, which will compare the status of the
counter, i.e. how many objects are contained in place Objects, with the maximal
capacity of this place. If there is some free capacity available, then a new object
can be added. Otherwise, transition Put will stay disabled until some of the
objects will be removed.

• Note that this solution involves the BLOCKING STATE-DEPENDENT FILTER
pattern, which examinees the state of the counter and prevents from adding new
objects if the capacity of the place has been reached.

 30

Figure 32

SOLUTION 3:
In order to prevent over-accumulation of information objects in a certain place, aggregate
objects into a collection using the solution of the AGGREGATE OBJECTS pattern. Use the
solution of the BLOCKING STATE-DEPENDENT FILTER to examine the current size of the
collection and prevent adding new objects if the collection size reached the maximal place
capacity.

Implementation of Solution 3:
The list of instructions below describes how to implement Solution 3 of the CAPACITY-
BOUNDING pattern:

• Change the type T of place Objects to the collection type "LT=list T".
• Apply one of the variants of the QUEUE pattern to specify in which order objects

must be retrieved from the collection. In this example, the LIFO QUEUE pattern is
applied.

• Declare the value N, to represent a bound of the maximal capacity of place
Objects. In this particular example N=2, which means that at most 2 tokens can
be present in place Objects at once.

• Add a transition guard [size(l)<N] to transition Put, which will evaluate the size of
the collection, i.e. how many objects it contains, and compare it with the maximal
capacity of this place. If there is some free capacity available, then a new object
can be added. Otherwise, transition Put will stay disabled until some of the
objects will be removed.

Figure 33

APPLICABILITY:
Apply this pattern to

- Bound the capacity of a place, which is used as a buffer, or dynamic storage with
variable number of objects.

CONSEQUENCES:
This pattern provides a means for bounding the capacity of places. However, it is not
applicable for the places, an upper bound for which cannot be defined or does not exist.

All three solutions presented in this pattern require knowledge about the maximum number of
objects a place can hold. In contrast to solutions 1 and 2, where every object is represented

 31

by a separate token, the solution 3 aggregates all objects into one collection, and provides
extra flexibility by allowing performing operations on a group of objects at once.

Although the second solution has more complex diagram then the second solution, it allows
monitoring the exact value of the current place capacity and using it in a model elsewhere.

EXAMPLES:

• A supermarket has a set of items to be sold to the customers. Since the storage
capacity of the supermarket is limited, it is not acceptable to order more items then
the supermarket area allows to store.

• A souvenir company supplies shops with different kinds of gifts packed in the wooden
boxes. Limited number of gifts can be placed in the box. Placing more gifts then
allowed will leas to damaging the shape of gifts.

RELATED PATTERNS: this pattern uses the BLOCKING STATE-DEPENDENT FILTER in all
solutions; solution 3 uses the AGGREGATE OBJECTS pattern in addition.

 32

PATTERN 10: INHIBITOR ARC
ALSO KNOWN AS:

INTENT: to support “zero”-testing of places

MOTIVATION:
In some situations when using CPN, there is a need to use an inhibitor arc. An inhibitor arc is
an arc connecting a place and a transition, which cannot fire if the input place along the
inhibitor arc contains at least one token. Eventually, it might be necessary to have a transition,
which is enabled if a place is empty.

PROBLEM DESCRIPTION:
In Petri nets, it is easy to test the presence of a token in a certain place by firing a transition,
which consumes the correspondent token. However, it is not possible to test the absence of
tokens in a place. Consider the situation presented in Figure 34. Objects of type T are placed
on and taken from place Object.

Figure 34

Now suppose that there is a cycle (see Figure 35), which involves a consumer of the objects.
If the consumer is Ready, it can get an object and process it. If there are no objects to be
consumed, then the consumer goes to the Sleeping state. In this example, transition Sleep
can only fire if place Object is empty. A variant of this situation is the situation where place
Object does not hold a token with a specific value.

Figure 35

As it was already mentioned, according to the firing rule of the Petri net it is not possible to fire
transition Sleep when no tokens (with specific value) are present in place Object. Thus, the
addressed behavior of inhibitor arc is directly not supported.

SOLUTION 1:
In order to test whether no objects are contained in a place, able to store unlimited number of
objects, use the AGGREGATE OBJECTS pattern to organize objects in a collection and
connect an inhibitor arc to it.

 33

Implementation of Solution 1:
Figure 36 demonstrates how to add an inhibitor arc for testing that no objects are contained in
the collection.

Figure 36

The list of instructions below describes how to implement the Solution 1 of the INHIBITOR
ARC pattern:

• Replace place Object, which contains objects of type T, by place Objects, which is a
collection of type LT. In this case a list type "color LT = list T;" is used. Note that the
order of objects is out of importance.

• Change initial marking of place Objects to the empty list [], if originally place Object
contained no elements. Otherwise, fill in the list with the corresponding elements.

• Replace an inhibitor arc by a bi-directional arc with an inscription [] (this arc is
highlighted with the pink color in Figure 3). By means of the specified arc, transition
Sleep will become enabled only when the collection stored in place Objects is empty,
i.e. no objects are stored in the collection.

In this example transition Get is coupled to the guard function [l<>[]], which ensures that this
transition may fire only if the list of objects l is not empty. This allows an inhibitor arc react
upon the empty collection.

Figure 37

 34

SOLUTION 2:
In order to test whether no objects are contained in a place, able to store a limited number of
objects, use an "anti-place" described in Solution 2 of the CAPACITY-BOUNDING pattern and
connect an inhibitor arc to it.

Implementation of Solution 2:

Figure 38

The list of instructions below describes how to implement Solution 2 of the INHIBITOR ARC
pattern:

• Add an extra place Anti-place and connect it to the incoming and outgoing transitions
(Put and Get) of the place (Objects), which needs to be connected to the inhibitor arc.

• Select a bound of the place, i.e. the maximum number of elements, which a place
may have. Use this bound to specify the number of elements contained in the initial
marking in place Anti-place. By doing this, anti-place turned to be a limit place (see
the CAPACITY-BOUNDING pattern). In this case the bound 5 is selected

• Add a bi-directional inhibitor arc connected from place Anti-place to the required
transition (Sleep).

• Add an inscription “N’e” to the inhibitor arc, where N is a bound chosen above.
Transition Fire if empty will fire only if no objects are contained in place Object and
correspondingly N tokens are contained in the anti-place.

Note that if place Object was originally bounded, an introduction of an anti-place has not
changed its behavior and did not influence the correctness of the construction.

Figure 39

 35

SOLUTION 3:
In order to test whether no objects are contained in a place, able to store a limited number of
objects, use a "counter-place" described in Solution 2 of the CAPACITY-BOUNDING pattern
and connect an inhibitor arc to it.

Implementation of Solution 3:

Figure 40

The list of instructions below describes how to implement Solution 3 of the INHIBITOR ARC
pattern:

• Add an extra place Counter-place and connect it to the incoming and outgoing
transitions (Put and Get) of the place (Object), which needs to be connected to the
inhibitor arc.

• Declare the value N, to represent a bound of the maximal capacity of place Objects.
In this particular example N=2, which means that at most 2 tokens can be present in
place Objects at once.

• Add a transition guard [n<N] to transition Put, which will compare the status of the
counter, and prevent adding new objects if the place capacity has been reached.

• Add a bi-directional inhibitor arc connected from place Counter-place to the required
transition (Sleep).

• Add a transition guard [n=0] to transition Sleep, to specify that this transition may fire
if no objects are contained in place Object.

Figure 41

APPLICABILITY:
Apply this pattern to

- Test the absence of tokens or presence of tokens with specified properties in place
with either bounded or unlimited capacity.

 36

CONSEQUENCES:
The INHIBITOR ARC pattern offers three solutions. The first solution involves the aggregation
of objects and should be applied when the size of the collection of objects is not bounded.
This solution is a trade-off between the high level of encapsulation, i.e. hiding the behavior
inside the functions, and a high degree of net flexibility. In its turn, the second and third
solutions make use of anti-place and counter-place correspondingly, and it should be applied
only if a place, connected to the inhibitor arc, has a limited capacity.

This pattern is extended by the COLORED INHIBITOR ARC pattern for testing of "non-
containment" property of places to check that an object satisfying a certain property is not
present in a place.

EXAMPLES:

• A medical assistant makes appointments with patients through the telephone. As long
as patients are on the phone, the assistant continues handling their requests. When
no patients left on the phone, the assistant switches to the patient waiting in the
queue at the reception counter.

RELATED PATTERNS: this pattern uses AGGREGATE OBJECTS and CAPACITY-
BOUNDING patterns in its solutions. It is extended by the COLORED INHIBITOR ARC
pattern.

 37

PATTERN 11: COLORED INHIBITOR ARC
ALSO KNOWN AS:

INTENT: to support "non-containment" property of places

MOTIVATION:
The INHIBITOR ARC pattern allows testing the absence of tokens in a certain place. In some
situations, instead of testing "zero"-property of place, it might be necessary to test the color of
tokens present in a place. Eventually, it might be necessary to have a transition, which is
enabled if a place does not contain a token satisfying a certain property.

PROBLEM DESCRIPTION:
In Petri nets, it is easy to test the presence of a token in a certain place by firing a transition,
which consumes the correspondent token. However, it is not possible to test the absence of
tokens in a certain place. Consider the situation presented in Figure 42. Objects of type T are
placed to and taken from place Object.

Figure 42

Now suppose that we want to check whether place Object does not hold a token with a
specific value.

SOLUTION 1:
In order to check whether no objects satisfying a certain property are contained in a place,
able to store an unlimited number of objects, organize objects into a collection as a Solution 1
of the INHIBITOR ARC pattern suggests, and extend the inhibitor arc with "color" for
examining the content of the collection.

Implementation of Solution 1:
The list of instructions below describes how to implement Solution 1 of the COLORED
INHIBITOR ARC pattern:

• Aggregate objects of type T into a list "LT=list T".
• Take the current list of objects l and check by means of the function in the guard of

transition Move if y is an element of the list. Function “fun elt(y,[]) = false | elt(y,x::l) =
if x=y then true else elt(y,l);” is a Boolean function, which returns true if y is an
element of the list, otherwise false.

Figure 43

 38

SOLUTION 2:
In order to test whether no objects satisfying a certain property are contained in a place, able
to store a limited number of objects, use Solution 3 of the CAPACITY-BOUNDING pattern to
bound the capacity of objects collection, and connect a colored inhibitor arc for examining the
content of the tested place.

Implementation of Solution 2:
The list of instructions below describes how to implement Solution 2 of the COLORED
INHIBITOR ARC pattern:

• Aggregate objects of type T into a list "LT=list T". Limit the capacity of the collection
by transition guard [size(l)<N]

• Take the current list of objects l and check by means of the function in the guard of
transition Move if y is an element of the list. Function “fun elt(y,[]) = false | elt(y,x::l) =
if x=y then true else elt(y,l);” is a Boolean function, which returns true if y is an
element of the list, otherwise false.

Figure 44

APPLICABILITY:
Apply this pattern to

- Test the absence of tokens satisfying a certain property in place with limited or
unbounded capacity.

CONSEQUENCES:
The COLORED INHIBITOR ARC pattern offers two solutions. Both solutions allow testing the
absence of an object satisfying a certain property in a collection of objects. The first solution is
applicable to the unbounded collection, while the second one is applicable to the collection
with a limited capacity.

EXAMPLES:

• A medical assistant makes appointments with patients through the telephone. As long
as patients are on the phone, the assistant continues handling their requests. When
no patients left on the phone, the assistant switches to the patient waiting in the
queue at the reception counter.

RELATED PATTERNS: this pattern extends the INHIBITOR ARC pattern in its solution 1,
and uses solution 3 of the CAPACITY- BOUNDING pattern in its solution 2.

 39

PATTERN 12: SHARED DATABASE
ALSO KNOWN AS: DATA VISIBILITY MANAGER, SHARED PLACE

INTENT: to enable centralized storage of data shared between multiple transitions,
supporting different levels of data visibility (i.e. local, group, or global)

MOTIVATION:
In Petri nets, a transition is only aware of data available in input places connected to it, but
has no knowledge about the data inputs of other transitions. In other words, the visibility of
data relatively a transition is local. In some cases, it is necessary to make data visible to a
group of transitions or to all transitions contained in a model, providing the group and global
visibility respectively.

PROBLEM DESCRIPTION:
Assume that a chain of transitions is given (Figure 45), and it is necessary to pass some data
from the start of the chain A to the end D. Although intermediate steps do not change the data
at all or change it not frequently, the data is passed through the whole sequence of transitions
rather then being available upon request, i.e. only at the moment when it is needed.

Figure 45

Data x with an identifier id is sequentially passed from place A to D through transitions T1, T2
and T3. Although transition T2 does not use the data x, it anyway has knowledge about it,
since it passes the data through. In terms of network transfers, this leads to overloading of the
traffic, increases duration of the transfer and lows down the overall performance. From the
security point of view, it might be desirable to limit a set of transition to a group of transitions
authorized to access data, thus preventing information outflow.

SOLUTION:
In order to centralize storage of data shared between multiple transitions, use a shared
database. The shared database is a place that provides rapid access to data it contains by
transitions, connected to it.

In order to enable the global visibility of data in a model, connect all transitions to the shared
database. In order to limit the visibility of data to a certain group of transitions and thus obtain
the group visibility, connect to the shared database only to those transitions, which are
allowed accessing the data. The local visibility can be obtained by connecting only one
transition to the database. Thus, number of transitions connected to the shared database
defines the visibility of data in a model.

Implementation of Solution:
The list of instructions below describes how to implement the SHARED DATABASE pattern
with a group visibility (a group, which is composed out of all transitions in a model, provides
the global visibility):

• Introduce a place Shared data, where data for sharing, will be stored. Define the
format of data stored in the database, providing that all data stored in the database
can be referenced by means of unique identifiers (as required by the DATABASE
MANAGEMENT pattern, which defines an interface for accessing the shared
database). Instead of passing data through the whole chain of transitions, which has
no access to the shared database, it is sufficient to pass only an identifier
correspondent to the data.

 40

• Define the level of data visibility, and thus the number of transitions, which will be

connected to the database.
• Connect the identified transitions to the shared database by means of bidirectional

arcs. An arc in the direction of transition supplies transition with a current value of
data, identifier of which matches to the identifier of data requested by transition. For
details of an interface for accessing data from a database, consult the DATABASE
MANAGEMENT pattern.

• In order to organize data stored in the shared database into a data structure of the
collection type, so that the whole database corresponds to a single token, the
AGGREGATE OBJECTS pattern can be applied.

Figure 46 Shared database with Group visibility

APPLICABILITY:
Apply this pattern to

- Share some data between a group of transitions, so that each transition may access
the data from the database whenever it needs to;

- Restrict an access to data by unauthorized transitions;
- Use data with different levels of visibility, for instance, local or global variables and

constants.

CONSEQUENCES:
The definition of a level of data visibility is one of the most important decisions the developer
of a model should take at an early stage of the development. Carefully selecting the visibility
of data, may help in preventing unauthorized data access, information outflow, or making
model cumbersome by passing through irrelevant or complex data. In almost every model,
there is a need in one global database, which stores the persistent information (often non-
variable or less-frequently variable), and several local databases, the visibility of data
contained in which is limited to a certain group of transitions.

The drawback of implementing this pattern is that it can make a model look "spaghetti-alike"
due to the multiple arcs connecting transitions and a shared place. The model complexity may
increase dramatically if you need to introduce multiple databases, thus creating for each
group an extra place with corresponding arcs. Therefore, one should make a trade-off
between the increased model complexity, introduced by external shared places, and an
importance of (non-)limited access to data.

As it was mentioned in the implementation section, for structuring the database, this pattern
can be combined with the AGGREGATE OBJECTS pattern.

In some situations, there is a need to make data available in one shared database, also
available in other locations. To make this possible, this pattern should be combined with the
COPY MANAGER pattern.

 41

EXAMPLES:

• A supervisory board is composed of ten people, from which three persons are
responsible for the budget affairs. Each of the three persons has an access to the
bank account. The visibility of account in this case is limited to a group of three
people.

• An Internet-shop allows any visitor of the site to view the products sold by the shop.
The visibility of products is global.

• Two companies, each of which has a number of internal projects, are involved in a
joined project. The members of both companies have an access to the joined project
(global visibility). However, the members of one company have no access to the
internal projects of the other company, since the visibility of those projects is limited to
the group of people working in the company-owner of the project.

RELATED PATTERNS: this pattern includes the DATABASE MANAGEMENT pattern. To
structure the database in one collection, this pattern can be combined with the AGGREGATE
OBJECTS pattern. To make the data stored in the shared database also available at other
locations, this pattern can be combined with the COPY MANAGER pattern.

 42

PATTERN 13: DATABASE MANAGEMENT
ALSO KNOWN AS: READ/WRITE

INTENT: to specify the interface of accessing data, stored in a shared database, for read-only
and modification purposes

MOTIVATION:
The SHARED DATABASE pattern provides a solution for centralizing the data shared
between several transitions, allowing support of different levels of data visibility. Usually a
shared database is used either as a static data provider, which contains data only for read
purposes and prohibits modifications, or as a dynamic storage, where data is being accessed
for read/write purposes. To make the distinction between these two types of databases, their
access interfaces should be clearly specified.

PROBLEM DESCRIPTION:
Assume that two independent threads need to retrieve data from the Shared Database for
read-only and modification purposes correspondingly. According to the SHARED DATABASE
pattern, it is necessary to connect the transitions Read-only and Modify to the Shared
Database, making the data stored in the database visible and shared between these
transitions. However, when connecting transitions to the database, it is not clear what
interface must be used for retrieving the data for read-only and modifying purposes
correspondingly.

Figure 47

SOLUTION:
Assumption: the shared database stores data in the format, according to which for every data
stored in the database there is a unique identifier referencing to it.

In order to retrieve a data element from the shared database, use an identifier associated with
the data as a reference. For read-only purposes retrieve the value of data and place it back
when finished reading. For modification purposes, retrieve the value of data, modify it, and put
the modified value back to the database.

Implementation of Solution:
Figure 48 visualizes the pattern for read/write access of data stored in the shared database. It
is a generalization of both read/modify operations, which allows the shared database of
dynamic type both to read and modify data stored in it. The specialization of this pattern, an
interface for accessing the shared database of static type, can be derived from the interface
for accessing the dynamic database by removing the elements responsible for data
modification and keeping the ones for read-only purposes.

• Connect the shared database Shared DB to transition Modify data, providing the
value of data element with requested identifier (id1, val1). Note that the data identifier

 43

serves as a key for retrieving the value of data from the database, thus using the ID
MATCHING pattern.

• Add a guard to transition Modify data. In particular, for modification purposes the
content of a function F() defines what value will be assigned to the data element.

• After the guard has been evaluated, the new value val1_m is placed back to the
Shared DB.

Figure 48 Read/write access

Figure 49 illustrates an interface for “read-only” access.

• To provide read-only access to the data stored in the shared database, retrieve the
value of data val1 with an identifier id1, supplied to transition Retrieve and return it to
the database without being changed.

Figure 49 Read-only access

Figure 50 shows a special case of read/write access to the database: a data stored in the
centralized storage needs to be retrieved and modified, so that a new modified value of the
data is placed to the database, but an old value val1 of data with id1 is transferred to the
output Out of transition Access data.

 44

Figure 50 Retrieve and then modify

The list of steps below contains instructions for implementing access interfaces in the
example presented in the Problem description section of the DATABASE MANAGEMENT
pattern.

• Since every data in the shared database is associated with a unique identifier, the
latter should be used as a reference for the data when retrieving the data from the
database. Therefore, provide the values of identifiers as an input for transitions Read-
only and Modify.

• For Read-only operation, draw an arc from the Shared Database with an inscription
(id, val1), so that the identifier provided from In1 is the same as of the data element,
taken from the database. After reading the data, put the data back to the database by
means of an arc directed to the Shared Database and the same arc inscription.

• For Modify operation, first retrieve the current value of the data with a referenced
identifier. For this, draw an arc to the Shared Database in the direction of transition
Modify. Add an arc inscription (id2,value), where id2 is a value of the identifier
supplied from In2. Add a transition guard [val2=f(value)], which takes the retrieved
data value as a parameter, modifies it and returns the modified value of the same
type back. Draw an arc from the transition Modify in the direction of the Shared
Database and put on the arc inscription the modified value (id2, val2) back to the
database.

Figure 51

APPLICABILITY:
Apply this pattern in order to

- Realize an access interface for the shared database of the static type, which provides
data for read-only purposes.

- Realize an access interface for the shared database of the dynamic type, which
allows both reading and modifying data stored in the database.

 45

CONSEQUENCES:
The DATA MANAGEMENT pattern clarifies interfaces for accessing the shared databases of
static and dynamic types. However, this pattern does not deal with problems, which might
appear during simultaneous access of data for modification by several transitions. In order to
synchronize the concurrent access to shared data the SHARED DATABASE pattern should
be combined with the LOCK MANAGER pattern for providing an exclusive access for all data,
or with BI-LOCK MANAGER for providing a shared access for reading but an exclusive
access for writing.

EXAMPLES:

• Database with bibliographical information relating to books, articles, and other
published materials.

• Centralized storage of patient data in hospital, available in any functional department
of the hospital.

RELATED PATTERNS: this pattern uses the ID MATCHING pattern in its solution. To solve
synchronization problems of concurrent data access this pattern can be combined with the
LOCK MANAGER pattern or BI-LOCK MANAGER.

 46

PATTERN 14: COPY MANAGER
ALSO KNOWN AS: DATA REPLICATION

INTENT: to make data, stored in the shared database, available at other locations for local
use, maintaining the consistency of data in all places

MOTIVATION:
In many situations, data stored in a central database needs to be accessed concurrently in
different, often independent of each other, locations. Such local places need to be able to
work with the data even when the connection to the central database is not available. The
data stored in the central database must be up-to-date, i.e. any change to the data should be
taken into account for ensuring the overall data consistency.

PROBLEM DESCRIPTION:
Assume that there is a central database, in which data of employees is stored. Different
departments, i.e. financial department, housing service, education center, etc. need to use
this data in their work concurrently. Due to an exclusive access to the database, one
department will not be able to use the data until it is not released by another department.
Such dependency results in a long waiting time and inefficient work whatsoever. In addition,
under condition that departments connect to the central database through the network, if the
latter is temporarily unavailable, the access to the data will be limited for all departments.
Thus, there is a need in making the data stored in the central database available locally.

SOLUTION:
In order to make data stored in the shared database also available at other locations, use a
copy manager. The copy manager replicates the data from the central database and stores it
in the local storage. The copy manager maintains data consistency by updating data in the
main database if some data in the local copy was modified, and correspondingly
synchronizing local copies with the original databases on the regular bases for incorporating
data changed in the original database.

Implementation of Solution:
The list of instructions below describes how to implement the COPY MANAGER:

• In order to be able to replicate data from the shared database, ensure that data in the
shared database is aggregated into a collection, thus allowing to copy all database
elements in one go. Copying one element after each other is inefficient and time-
consuming, therefore is not considered.

• Create a new place Local copy, where a local copy of the data available in the central
database will be stored. Note that the types of places Shared Database and Local
copy should be the same.

• Connect the place Shared Database, where the central database is stored, to the
newly created local database, through the transition Replicate, which copies all data
from one place to the other.

• After data stored in the local database was modified, update the old value stored in
the central database with a new one, produced by transition Modify. Which data and
how it modified is out of the scope of this pattern. Note that there is no need to
execute Report change transition if the data in local copy was read-only but not
modified.

• Since there is no need to update the whole database after one of its elements was
modified in local copy, pass only the modified data, together with its identifier, to
place Modified value.

• Transition Report Change takes the whole collection of data from the Shared
Database and replaces the value of data element with a specified id.

fun update((id,a)::queue,id2,y) = if (id=id2) then (id,y)::queue else
(id,a)::update(queue,id2,y);

• Regularly synchronize Local copy with Shared Database by executing transition
Replicate, which consumes old data from Local copy and puts new data provided by
Shared Database.

 47

Figure 52

APPLICABILITY:
Apply this pattern to

- Provide availability of data stored in one place also at another places, by means of
data replication.

- Maintain consistency between two or more databases by reporting changes and
synchronizing with changes introduces by other.

CONSEQUENCES:
Since multiple local databases may modify the data stored in their copies, these changes
should be communicated to the central database to ensure the data consistency. Because
different sources may want to update the same data in the central database concurrently,
there is a need to incorporate the (BI)-LOCK MANAGER pattern, which solves
synchronization problems inherent to concurrent access.

Note that even if no data is changed in the local copy, it is necessary to periodically replicate
the data for incorporating the last changes introduced either by the central database itself or
by other local databases in order to provide overall data consistency.

EXAMPLES:

• Mobile workers require a reliable software solution that allows them to access their
organization's data locally on a mobile device, modify this data, and synchronize the
changes with a database on a remote server in a timely fashion.

RELATED PATTERNS: this pattern can be combined with the LOCK MANAGER or BI-LOCK
MANAGER pattern to solve synchronization problems, which might appear during updating
the database.

 48

PATTERN 15: LOCK MANAGER
ALSO KNOWN AS: MUTUAL EXCLUSION

INTENT: to synchronize access to shared data by means of exclusive locks

MOTIVATION:
When several related processes execute concurrently, often they share some resources or
data stored in a shared database. The SHARED DATABASE pattern allows multiple actors to
access data stored in the shared database concurrently, but does not protect from overwriting
each other's changes accidentally or reading inconsistent data due to in-progress changes.

PROBLEM DESCRIPTION:
Assume that two owners of the same bank account withdraw money from different cash-
dispensers simultaneously. If both cash-dispensers access the account concurrently, it is not
clear either one or both amounts will be subtracted from the account and what would be the
final status. Thus, unsynchronized access to information stored in the shared database can
lead to data inconsistency.

SOLUTION:
In order to synchronize access to shared data, use a lock manager. The lock manager allows
only one actor to use a shared data at a time. In order to get an access to a shared data, an
actor must acquire a lock. An actor that owns a lock must release a lock before the shared
data can be used by another actor.

Implementation 1 of Solution:
The lock manager consists of two parts:
- Lock acquisition;
- Lock release.

Figure 53 illustrates the mechanism of lock acquisition.

• Place Object Locks contains for each of the information objects obj, which are
shared between multiple consumers p, a list cl of actors, which obtained a lock on
the correspondent object. Thus, each object is associated with a list of consumers
(obj,cl).

• Place Consumer Locks contains for each of the consumers, which have access to
the shared database, a list of objects, for which the consumer obtained a lock. Thus,
each consumer is associated with a list of locked objects (p,l).

Figure 53 The mechanism of lock acquisition

 49

• Place Request contains requests of consumers to access a certain object in form of

(object_id, actor_id).
• Transition Acquire lock checks whether it is allowed to grant a lock for the specified

object by means of isLockAllowed() function, which examines if there was already
lock acquired for the specified object. If no lock was granted, then the actor gets the
lock, and the status of Object Locks and Consumer locks are updated as it is shown
in arc inscriptions, otherwise transition Acquire blocks the request if no lock can be
obtained.

• Note that the described mechanism is used for acquiring exclusive locks, which
means that only one consumer at a time may have a lock on a certain object.
However, this mechanism is suitable for shared lock acquisition, i.e. when multiple
actors may have a lock on the same object. This is why in place Object Locks every
object is associated not with a single consumer, but with a list of consumers, which
acquired a lock for this object.

Figure 54 illustrates the mechanism of lock release.

• Transition Release lock, after a consumer finished using an object, releases the lock
on the correspondent object. Delete functions delete(obj,L) and del(p,cl) specified in
arc inscriptions remove the released object from the list of objects locked by the
consumer in Consumer Locks, and remove a consumer from the list of consumers
having the lock on the released object in Object Locks respectively.

Figure 54 The mechanism of lock release

The lock manager, which contains both mechanisms for lock acquisition and lock release, is
presented in Figure 55. Note that this implementation incorporates an individual lock release,
which means that if an actor has locks on several objects, then the locks will be released
sequentially one-by-one.

 50

Figure 55 The lock manager (individual lock release)

Implementation 2 of Solution:
This implementation alternative, which is visualized in Figure 56, incorporates collective lock
release. In contrast to individual lock release of implementation alternative 1, if an actor has
locks on several objects, and the actor finished processing the objects, the locks are removed
and updated in one batch. Note however that transition Release lock still fires multiple times.
In this case, the mechanism of lock release is indirect and hidden from the collection of
Consumer Locks.

APPLICABILITY:
Apply this pattern in order to

- Ensure synchronization of concurrent access to data shared between multiple actors,
by means of exclusive locks, i.e. allowing only one actor at a time accessing the data.

CONSEQUENCES:
The LOCK MANAGER pattern solves the problem of unsynchronized access to shared data.
We suggest to apply this pattern in combination with shared databases described in the
SHARED DATABASE pattern, in order to maintain consistency of data in the database and
provide exclusive access to the data stored in the database.

 51

Figure 56 The lock manager (collective lock release)

Note that this pattern incorporates the ID MATCHING pattern in its solution for analyzing
consumer requests. In order to keep track of locks this pattern aggregates them into a list,
thus using the AGGREGATE OBJECTS pattern.

In case if an exclusive access to the shared data needs to be combined with a shared access,
instead of this pattern use its extension, i.e. the BI-LOCK MANAGER pattern.

EXAMPLES:

• Account access by banks, credit card companies and insurance companies
• Critical section, i.e. a section of code that should be executed by only one processor

at a time

RELATED PATTERNS: this pattern uses the AGGREGATE OBJECTS pattern and the ID
MATCHING pattern in its solution. This pattern is extended by the BI-LOCK MANAGER
pattern.

 52

PATTERN 16: BI-LOCK MANAGER
ALSO KNOWN AS: READ/WRITE LOCKS

INTENT: to synchronize access to shared data for reading and writing purposes by means of
shared and exclusive locks

MOTIVATION:
When several related processes execute concurrently, often they share some resources or
data stored in a shared database. The SHARED DATABASE pattern allows multiple actors to
access data stored in the shared database concurrently, but does not protect from overwriting
each other's changes accidentally or reading inconsistent data due to in-progress changes.
Often in practice, there is a need to provide shared and exclusive access to data stored in
shared database, i.e. multiple actors should be able to read data concurrently, however only
one actor must be able to modify the correspondent data at a time.

PROBLEM DESCRIPTION:
The LOCK MANAGER pattern solves the problem of synchronizing access to a shared
resource by means of exclusive locks. No matter how an actor will use a data, i.e. read or
modify, only one actor at a time may access the data. However, in some situations it is
necessary to differentiate between two types of access, i.e. access for reading or access for
writing, so that multiple actors can access an object for reading purposes, but for writing
purposes only by one actor at a time.

SOLUTION:
In order to synchronize access to shared data, allowing both shared and exclusive access,
use a bi-lock manager. The bi-lock manager, which is an extension of the LOCK MANAGER
pattern, allows multiple actors access data for reading purposes and only one actor to modify
data at a time. In order to get an access for reading, an actor must acquire a shared lock. In
order to get an access for writing, an actor must acquire an exclusive lock.

Implementation of Solution:
The list of instruction below describes how to implements the BI-LOCK MANAGER pattern:

• Extend the mechanism of lock acquisition for the LOCK MANAGER pattern in the
following way. Introduce two separate transitions for acquiring the shared and
exclusive locks respectively. Connect these transitions to place containing requests
for accessing an object posted by customer in form of (object_id, type_of_access,
consumer_id).

• In order to make a choice between the types of requested lock, use the
DETERMINISTIC XOR-SPLIT pattern. Add transition guards [st=retrieve] and
[st=modify] to transitions Acquire shared lock and Acquire excl lock respectively.

• Connect both transitions to place known locks, which keeps track of objects locked by
each of the customers so that every customer p has a list of (object_id,
type_of_access) on which locks were granted.

• Introduce two separate places shared locks and exclusive locks. The former one will
store for every object a list of consumers, who requested a read lock. The latter one
will store only an identifier of a single consumer, who requested an exclusive access
to the object.

• Introduce an arc from the shared locks to transition Acquire excl locks with an
inscription (obj, []). This will ensure that an exclusive lock may be granted if no other
consumers access the object. This means that no actor may modify data as long as
another actor reads or modifies it.

 53

Figure 57 Bi-lock acquisition

Figure 58 shows how to incorporate the collective lock release, described in the LOCK
MANAGER pattern, into the management of the shared and exclusive locks.
After an object, an exclusive lock on an object, which has been granted to a customer,
becomes available, it is necessary to release the exclusive lock and enable both shared and
exclusive access to this object. For this, add an arc from transition release x lock to place
shared locks. (The rest of the functionality of the release mechanism is the same as
described in the LOCK MANAGER pattern).

Figure 58 Bi-lock management

 54

APPLICABILITY:
Apply this pattern in order to

- Ensure synchronization of shared and/or exclusive access to data shared between
multiple actors, which need to read or modify the shared data respectively.

CONSEQUENCES:
The BI-LOCK MANAGER is an extension of the LOCK MANAGER pattern. This pattern can
be applied in combination with a COPY MANAGER pattern, which replicates data stored in
the central database into local copies, and local copies for data consistency purposes report
their changes to the central database. To prevent overwriting the same data, the exclusive
access is required, however for reading purposes the shared access is sufficient.

Similar to the LOCK MANAGER pattern, this pattern should be used in combination with
shared databases described in the SHARED DATABASE pattern, in order to maintain
consistency of data in the databases, while allowing multiple actors accessing it concurrently.

EXAMPLES:

• Account access by banks, credit card companies and insurance companies, which
provide the shared access for reading but the exclusive access for writing.

RELATED PATTERNS: this pattern can be used in addition to the SHARED DATABASE and
COPY MANAGER patterns. This pattern is an extension of the LOCK MANAGER pattern.

 55

PATTERN 17: LOG MANAGER
ALSO KNOWN AS:

INTENT: to record the information about actual process execution by means of a data log

MOTIVATION:
In many situations, after executing a business process, a financial transaction, etc. it is
necessary to record the information about actual process execution, i.e. what happened in
between steps, what data was passed or modified, when and by whom. Based on such data it
is possible to draw conclusions about the process efficiency, find out errors occurred or make
data based analysis.

PROBLEM DESCRIPTION:
Consider a net presented in Figure 59. A chain of two transitions Task A and Task B are
executed sequentially, i.e. one after another, processing data supplied from place In and
storing the result in place Out. Although it is possible to gather the information about initial
values of data provided by place In and final values stored in place Out, no information about
actual process, i.e. which task modified which value and at what time, is available.

Figure 59

SOLUTION 1:
In order to record the information about actual process execution in a specific place, use an
individual log manager. The individual log manager samples a transition, the information
relevant to execution of which needs to be collected, and records this information into a
separate log. Note that there is one-to-one correspondence between the sampled transition
and the log place.

Implementation 1 of Solution:
Create a separate log for every transition, the information about execution of which needs to
be recorded:

• Select a transition, the execution-related information of which needs to be recorded,
(Task A in Figure 60).

• Create a new place Log, where the execution-relevant information will be stored.
Define what data should be recorded, and correspondingly define the data format and
type of place Log.

Figure 60

 56

SOLUTION 2:
In order to record the information about actual process execution, use a collective log
manager. The collective log manager samples every transition, the information relevant to
execution of which needs to be collected, and records this information to a single log
collection. Note that there is a many-to-one correspondence between the sampled transitions
and the log place.

Implementation of Solution 2:
The list of instructions below describes how to implement Solution 2 of the LOG MANAGER
pattern:

• Create a common place Log for logging the information related to execution of
multiple transitions, and the AGGREGATE OBJECTS pattern to organize all logs into
one collection. Note that all transitions must provide information in the same format
selected for logging.

• In order to insert a data into the Log, take the current list of logs and add a new data
to it. It is possible to sort data in the log, based either on the order of insertion or
timestamp for instance. For this purpose, the AGGREGATE OBJECTS pattern can be
combined with the QUEUE pattern or one of its variants.

• Note that if the time-relevant information is required for logging, in addition to a token
value, each value may carry a time-stamp of type Time.time. The timestamp can be
used as a parameter for sorting the data logs.

Figure 61

APPLICABILITY:
Apply this pattern to

- Record the execution-relevant information in order to get insight in intermediate steps
of process execution for analysis purposes.

CONSEQUENCES:
The LOG MANAGER pattern provides two solutions for recording the information, based on
which the flow of control and data in the modeled system/process can be analyzed.

Solution 1 is suitable for logging the information related to execution of a certain transition in a
model. It allows to record different types of information for each specific transition. This
solution can be used to test for instance critical points in a model. However, when the same
type of information needs to be gathered from all transitions in a model, Solution 2 fits better.
It centralizes data into one collection and allows sorting of the collection for structuring
purposes.

EXAMPLES:

• Logging of the patients' state in the hospital on the daily basis for analysis of
efficiency of treatment applied to a patient

RELATED PATTERNS: this pattern uses the AGGREGATE OBJECTS pattern in solution 2.

 57

PATTERN 18: BLOCKING STATE-INDEPENDENT FILTER
ALSO KNOWN AS: BSI FILTER

INTENT: to prevent data, non-conforming to a certain property, from passing through

MOTIVATION:
In many different application examples, data intended for transferring from one source to
another, or recording and processing afterwards, can be the scrambled, modified or flawed.
Because of this, a target recipient of data instead of dealing with data of expected format,
values and size, can be faced with incorrect, invalid or unknown data. Thus, there is a need in
filtering incoming data depending on data-specific quality or characteristics.

PROBLEM DESCRIPTION:
Consider the mining of processes, which extracts workflow models from event-data logs. In
many cases the data logs, which are provided for mining, include redundant information, i.e.
repeating data, or so-called data noise, i.e. records of events, which are irrelevant to the
process under mining. Mining of the process without distinguishing noise and redundancy in
data logs can lead to discovering of the process, different from the desired one.

SOLUTION:
In order to prevent data, non-conforming to a certain set of properties associated with this
data, from passing through, use a state-independent filter. The state-independent filter
consumes data from the input place, analyses it against the set of specified conditions, and in
case of properties fulfillment passes data to the output.

Implementation of Solution:
The list of instructions below describes how to implement a state-independent filter:

• Connect the place In, where non-filtered data is located to transition Filter.
• Specify the conditions for filtering in a guard of Filter transition. In the example in

Figure 62 incoming integer data must be bounded from bottom by value 5, i.e. only
data with values bigger then five will be passed to the output place out. Note that
incoming data may be of any nature, i.e. lists, composite data structures, etc.

• Note that in this implementation alternative, the Filter has knowledge about the data
bounds in which the incoming data should fit, and it does not handle the data, which
do not fulfill the condition specified in the guard.

Figure 62 The blocking state-independent filter

APPLICABILITY:
Apply this pattern to

- Prevent transition of data non-compliant to a certain set of properties. This allows
limiting the range, amount and types of incoming data based on the value of data
itself and a state of an external data collection, if necessary.

CONSEQUENCES:
This pattern should be applied in situations, where filtering properties directly involve the
value of incoming data. One of the characteristics of this pattern is a “blocking” feature, which
allows only data fulfilling a certain property to pass through, but blocks the rest of data in the
input place of the filter.

 58

The drawback of this pattern is that it does not prevent from accumulation of objects, which
did not fulfill the specified property in the input place of the filter. To address this problem, the
DETERMINISTIC XOR-SPLIT pattern or an extension of this pattern, i.e. NON-BLOCKING
STATE-INDEPENDENT FILTER, can be used instead.

In some situations, the filtering properties need to be based as on the value of incoming data
as on the state of some externally available data structure. In this case, an extension of this
pattern BLOCKING STATE-DEPENDENT FILTER can be applied instead.

EXAMPLES:

• From a stream of students only those ones who delivered homework are allowed to
take a part in the exam

RELATED PATTERNS: this pattern is used in the DETERMINISTIC XOR-SPLIT pattern, and
is extended by the BLOCKING STATE-DEPENDENT FILTER pattern and NON-BLOCKING
STATE-INDEPENDENT FILTER pattern.

 59

PATTERN 19: BLOCKING STATE-DEPENDENT FILTER
ALSO KNOWN AS: BSD FILTER

INTENT: to prevent data, non-conforming to a property, involving the state of an external
data-structure, from passing through

MOTIVATION:
The BLOCKING STATE-INDEPENDENT FILTER pattern allows transitioning of data based
on a property, directly involving the value of incoming data. In some situations, there is a need
to incorporate a state of an external data structure into the filtering conditions. For instance, to
allow transitioning of actors, identifiers of which are registered within a certain database, or to
pass through only fresh data, which is not contained in a data collection. The state of such an
external data structure may be static or variable, which changes over time.

PROBLEM DESCRIPTION:
For participating in a course, students must register in advance by submitting an application.
Based on the received applications, a database of registered course participants is
constructed. Both registered and non-registered students are allowed to attend the lectures.
However, the certificates will be issued only to the registered students. From all requests on
issuing the certificate, only the ones posted by the registered students must be handled.

SOLUTION:
In order to prevent data, non-conforming to a certain set of properties dependent on a state of
an externally located data structure (i.e. list or multi-set), use a blocking state-dependent filter.
The blocking state-dependent filter consumes data from an input place, checks the state of
the external data collection, and in case of fulfillment the filtering conditions passes the data
to the output.

Implementation 1 of Solution:
The list below describes how to implement the BLOCKING STATE-DEPENDENT FILTER:

• Extend implementation of Solution 1 by connecting transition Filter to an external
data collection place State, contemporary state of which is used in the conditions for
filtering. Note that the state of this collection is always persistent, i.e. there is always
one token of collection type in it. Such place may be representation of a shared
database, for instance.

• Add a guard to transition Filter, i.e. a function check(l,x), which takes as inputs an
input data x and external collection l, and examines the fulfillment of a certain
property. For instance, the filtering condition used in the net in Figure 64 is satisfied if
no duplicated data has been sent.

• Collection l records all values of data that were passed to place out, and function
check() examines if an input data x is contained in the list l. Similar, one can specify
filtering conditions concerning non-containment of elements in the collection or non-
compliance to a certain criteria.

• Note that a state of the data collection can be static (Figure 65), i.e. do not change
during the whole process execution, or be dynamic (Figure 64), and vary under
influence of the control flow.

Figure 63 Figure 64

 60

Implementation 2 of Solution:
This implementation alternative also incorporates the filter condition dependent on the state of
external data. However, instead of using the state of data stored in a data collection, the state
of data distinguished as a separate entity is used. Figure 65 presents the filter, which allows
data non-contained in the external place State to pass through.

Figure 65

APPLICABILITY:
Apply this pattern to

- Prevent transition of data non-compliant to a set of properties, which involve the state
of an external data-structure.

CONSEQUENCES:
This pattern is an extension of the BLOCKING STATE-INDEPENDENT FILTER. Similar to
the latter, this pattern blocks the data, which does not fulfill a specified property, while not
solving a problem of accumulation of this data in the input place of the filter. In order to
address this problem, combine this pattern with the DETERMINISTIC XOR-SPLIT pattern or
use the NON-BLOCKING STATE-DEPENDENT FILTER instead.

This pattern can be applied in combination with the AGGREGATE OBJECTS pattern, for
incorporating the state of data in an external collection.

EXAMPLES:

• Assume that several hospitals are connected through a shared database of patients’
records. For administrative purposes, patient statistics are kept in a master table that
tracks data from all hospital. Nurses and doctors within each hospital need access to
the patients table, but they need only the rows that contain the data of the patients in
their hospital. To handle the needs of each hospital, a data filter that specifies the
subset of data that each group can access is required.

RELATED PATTERNS: this pattern is an extension of the BLOCKING STATE-
INDEPENDENT FILTER, it is extended by the DETERMINISTIC XOR-SPLIT pattern and
NON-BLOCKING STATE-DEPENDENT FILTER pattern.

 61

PATTERN 20: NON-BLOCKING STATE-INDEPENDENT FILTER
ALSO KNOWN AS: NBSI FILTER

INTENT: to filter out data fulfilling a certain property, while avoiding accumulation of non-
conforming data in the filter input place

MOTIVATION:
The BLOCKING STATE-INDEPENDENT FILTER protects the data non-fulfilling a certain
property from passing through. However, it does not handle the problem of accumulation of
non-conforming data in the input place. In some situations, it is necessary to reroute or store
somewhere else the data, which does not satisfy the filter property, rather then blocking and
ignoring this data instead.

PROBLEM DESCRIPTION:
The production industry before delivering the items to its customers must perform a quality
check. All produced items must be checked upon satisfaction the quality rules. Items which
satisfy quality constraints will be supplied to the customers, while items of low-quality can be
sent to a discount shop.

SOLUTION:
In order to prevent data, not fulfilling a certain set of properties associated with this data, from
passing through, while avoiding an accumulation of non-conforming data in the input place,
use a non-blocking state-independent filter. This filter consumes all data from the input place,
analyses it against the set of the specified conditions, and passes it to an output for either
data conforming or non-conforming the filter property.

Implementation of Solution:
The list of instructions below describes how to implement a non-blocking state-independent
filter:

• Connect the place In, where non-filtered data is located, to transition Filter.
• Create two output places Passed and Garbage, where data conforming and non-

conforming to the filter property will be placed correspondingly.
• Connect transition Filter to the output places. Specify on the output arcs mutually

exclusive filtering conditions, i.e. the filtering conditions, which must be fulfilled by
data in order to pass through the filter and negation of this condition in order to filter
out the non-conforming data.

• Note that the obtained construct (Figure 66) is a specialization of the Solution 2 of the
DETERMINISTIC XOR-SPLIT.

Figure 66 Non-blocking state-independent filter

 62

APPLICABILITY:
Apply this pattern to

- Check data incoming to the filter against a set of the specified properties in order to
filter out the non-conforming data, while avoiding over-accumulation of data non-
conforming to the filter properties in the input place.

CONSEQUENCES:
In contrast to the BLOCKING STATE-INDEPENDENT FILTER, this pattern handles all
incoming data allowing rerouting of data satisfying a filter property to one place, while all non-
conforming data to another place. This filter works deterministically, i.e. it has knowledge
about all possible data values and can be considered as a specialization of Solution 2 of the
DETERMINISTIC XOR-SPLIT pattern.

EXAMPLES:

• Patients in the hospital are analyzed against the health problems they experience and
are divided between the health specialists based on the characteristics of their health
problems.

RELATED PATTERNS: this pattern is an extension of the BLOCKING STATE-
INDEPENDENT FILTER and can be considered as a specialization of the Solution 2 of the
DETERMINISTIC XOR-SPLIT pattern.

 63

PATTERN 21: NON-BLOCKING STATE-DEPENDENT FILTER
ALSO KNOWN AS: NBSD FILTER

INTENT: to filter-out data non-conforming to a property, involving the state of an external
data-structure, while avoiding accumulation of non-conforming data in the filter input

MOTIVATION:
The NON-BLOCKING STATE-INDEPENDENT FILTER protects the data non-fulfilling a
property involving the state of externally available data from passing through. However, it
does not handle the problem of accumulation of non-conforming data in the input place. In
some situations, it is necessary to reroute or store somewhere else data, which does not
satisfy the filter property, rather then blocking and ignoring this data instead.

PROBLEM DESCRIPTION:
The driving school handles requests of the applicants for participation in the theory-driving
exam. A school officer checks in the database if an applicant subscribed for an exam. The
subscribed applicants are rerouted to the exam room, while applicants without subscription
are placed in the waiting queue. Requests of all applicants should be handled and none of
them should be ignored.

SOLUTION:
In order to filter-out data, non-conforming to a certain set of properties, involving the state of
an externally located data structure (i.e. list or multi-set), while avoiding accumulation of non-
conforming data in the input place, use a non-blocking state-dependent filter. This filter
consumes data from the input place, checks the state of external data collection, and in case
of fulfillment the filtering conditions passes the data to one output, while in case of non-
compliance to filtering conditions to other output.

Implementation of Solution:
The list below describes how to implement a NON-BLOCKING STATE-DEPENDENT
FILTER:

• Extend the solution of the BLOCKING STATE-INDEPENDENT FILTER in the
following way. Introduce two output places for transition Filter where data conforming
and non-conforming the filter properties will be stored correspondingly.

• Place filtering condition on the corresponding output arcs, i.e. a condition which must
be fulfilled for passing through the filter, and negation of this condition for filtering out
non-conforming data.

• The net in Figure 67 incoming data if it not contained in the external data collection is
passed through the filter, while repeating data, which is already contained in the
collection, is filtered out.

Figure 67 Non-blocking state-dependent filter

 64

APPLICABILITY:
Apply this pattern to

- Check data incoming to the filter against a set of the specified properties in order to
filter out the non-conforming data, while avoiding over-accumulation of data non-
conforming to the filter properties in the input place.

CONSEQUENCES:
This pattern checks whether incoming data satisfies a filtering property depending on the
state of an external database or a data collection. In case of property fulfillment the filter
routes data to one place, while in case of non-compliance to another place. This pattern
ensures that all incoming data are handled, thus avoiding accumulation of non-conforming
data in the filter input place.

This pattern can be considered as an extension of the BLOCKING STATE-DEPENDENT
FILTER pattern by means of applying Solution 2 of the DETERMINISTIC XOR-SPLIT pattern.

EXAMPLES:

• Handling of insurance claims, where all incoming claims should be analyzed and
either worked out in a detail or rejected.

RELATED PATTERNS: this pattern extends the BLOCKING STATE-DEPENDENT FILTER
pattern by using Solution 2 of the DETERMINISTIC XOR-SPLIT pattern.

 65

PATTERN 22: TRANSLATOR
ALSO KNOWN AS: DATA MARSHALING

INTENT: to enable coordinated communication between two actors with originally different
data formats

MOTIVATION:
When two actors (i.e. processes, applications, etc.) need to communicate to each other by
means of data transfers, the information sent by one actor may be misinterpreted or denied
due to difference in data formats. For successful data exchange, a common data format must
be used.

PROBLEM DESCRIPTION:
For coordinated communication between two actors with originally different data formats (data
types), the actors need to use a common data format. Changing the nature of an actor to
support a unified type can be difficult or impossible.

SOLUTION 1:
In order to coordinate data exchange between two tightly coupled actors with originally
distinct data formats, translate the format of data sender to the format of data receiver.

Implementation of Solution 1:
The list of instructions below describes how to implement Solution1 of the TRANSLATOR
pattern:

• When sending a data from one actor to another actor, which has a different data
format, keep the original data format of the sender. However, before sending the
data, translate the format of the sender to the format of the receiver. For this, connect
the sender and receiver by means of transition, specifying by connecting arcs the
direction of data flow. Add the transition guard a function translate(), which takes as
an input the data of the sender, and outputs the same data in the adjusted format.

• Such translation of data formats is possible only under the assumption that the
knowledge about the data formats of sender and receiver is available. Note that the
content of the function translate() is variable, and can be modified if the format of the
receiver changes.

• In the example in Figure 68, an Actor1 works with data of the following format
(data_name, data_value). Assume that the Actor2 requires the data in the following
format (header, data_name, data_value). Therefore, function translate() adds a
header to the data provided by the Actor1, and only afterwards, transition Send
supplies data to the Actor 2.

• The net in Figure 68 presents translation of all data supplied by Actor1 to Actor2.
Note that direct translation can be also done upon a request, so that not all available
data is being translated, but only the data, request for translation of which has been
obtained. In addition, there can be some differences in the moment of translation. In
particular, the translation can be done on the moment of production or consumption.

Figure 68

SOLUTION 2:
To coordinate communication between multiple actors with distinct data formats, while
ensuring that the actors are loosely coupled and are not aware of details of the data formats
of each other, translate all data formats to the common format, known to every actor.

 66

Implementation of Solution 2:
The list of instructions below describes how to implement Solution 2 of the TRANSLATOR
pattern:

• Implementation of this solution involves the ASYNCHRONOUS ROUTER, and ID
MATCHING patterns.

• The ASYNCHRONOUS ROUTER pattern ensures loose coupling between data
senders and receivers. Data sent by actors-senders is initially translated to the unified
format and then placed to Common place, where it stays until an actor-receiver does
not pick it up.

• Since data supplied by multiple senders is stored in Common place, the ID
MATCHING pattern is applied to ensure that an actor-receiver does not consume
data addressed to another actor.

• For each actor, which sends and receives data, two translation functions must be
introduced: translation of the actor data format to the common data format when
sending data, and translation of the common data format to the actor data format
when receiving data. Translation functions are incorporated into the transition guards.

Figure 69

APPLICABILITY:
Apply this pattern to

- Establish communication between two parties, the format of data of which differs from
each other.

- Exchange data between two tightly-coupled actors.
- Exchange data between multiple loosely-coupled actors.

CONSEQUENCES:
The TRANSLATOR pattern allows establishing data exchange between multiple actors,
providing compatibility of initially distinct data formats.

When multiple actors, each with different data types, are involved into data exchange, it might
be necessary to marshal data from every sender to every receiver. This means that for every
two actors with distinct data formats it is necessary to write two functions, translating one
format to another back and forward, if these two actors are directly connected to each other,
or writing two functions for every actor to translate its data format to a common format and
backwards, if communicating actors are loosely coupled.

EXAMPLES:

• In order to post the request for the financial grand, the sender must package all
information in a form requested by the financial committee.

• Two different types of processors, i.e. one processor working in the "Big Endian"
format, and another in "Little Endian" format, need to establish a communication
channel. Since their formats are mirror reflection of each other, i.e. 001 and 100, the
format of data sender should be inverted.

RELATED PATTERNS: this pattern uses ID MATCHING and ASYNCHRONOUS ROUTER
patterns.

 67

PATTERN 23: ASYNCHRONOUS TRANSFER
ALSO KNOWN AS:

INTENT: to allow transportation of data from one location to another, while avoiding the
sender to block

MOTIVATION:
In a distributed environment, several processes may proceed independently of each other
until one process needs to interrupt the other process by transferring data to it. Although the
processes are related to each other through a data channel, they should stay independent.

PROBLEM DESCRIPTION:
Assume that there are two processes running independently as Figure 70 illustrates. Process
1 produces data for transferring to another process. Process 2 processes data received from
another process. Waiting for acceptance of the data by Process 2 may cause blocking of
Process 1 and postpone preparation of data for the next data transfer.

Figure 70

SOLUTION:
In order to send data from one place to another, while avoiding blocking of the sender, use an
asynchronous transfer. The asynchronous transfer is established through a placeholder,
which stores data arriving from the sender until the receiver picks it up.

Implementation of Solution:
The list of instructions below describes how to implement the ASYNCHRONOUS TRANSFER
pattern:

• Introduce a new place Request, which will serve as a placeholder for data
asynchronously transferred from transition Send to transition Receive. The format of
data in the placeholder must incorporate data identifiers, known both to the sender
and to the receiver.

• Transition Send puts the (data_id, data_value) into the placeholder Request.
Transition Ackn uses the ID MATCHING pattern to withdraw a value of the data from
the placeholder.

 68

Figure 71 The Asynchronous Transfer

Figure 72 demonstrates how to incorporate the ASYNCHRONOUS TRANSFER pattern into
the net presented in the Problem description section.

Figure 72

APPLICABILITY:
Apply this pattern to

- Establish communication channel between multiple parties, when the sender of data
does not need an instant response on receipt of the data. This promotes
independency of parties and avoids blocking of the sender.

CONSEQUENCES:
Application of the ASYNCHRONOUS TRANSFER pattern allows transferring data from one
place to another, providing tight coupling between a sender and a receiver, while allowing
them to work independently.

When one data source needs to transfer data to multiple targets asynchronously, the tight
coupling between the sender and receiver introduced by the ASYNCHRONOUS TRANSFER
pattern may be undesirable. In such case, instead of this pattern the ASYNCHRONOUS
ROUTER pattern should be applied, which decouples a sender from receivers, thus making
them loosely coupled.

An advantage of this pattern that it does not block the sender, and does not require a sender
and a receiver always to be connected through a channel, since data sent can be queued.

 69

This pattern is similar to the SYNCHRONOUS TRANSFER pattern and the RENDEZVOUS
pattern, because they address similar kind of problems in the context of data transportation in
the distributed environment.

EXAMPLES:

• An employee needs to send a letter. He does not wait until a mail carrier arrives to
pick it up, but puts it in the mailbox. The mail carrier will pick it up on his own initiative.

• Participants, who are online at different times, use Web message boards,
newsgroups, or e-mail, thus interacting asynchronously.

RELATED PATTERNS: this pattern is used in ASYNCHRONOUS ROUTER pattern. This
pattern is similar to the SYNCHRONOUS TRANSFER pattern and the RENDEZVOUS pattern

 70

PATTERN 24: SYNCHRONOUS TRANSFER
ALSO KNOWN AS: REQUEST/ REPLY, PING-PONG

INTENT: to allow transportation of data from one location to another, ensuring that an actor,
which posted a request, is blocked until it does not receive the requested information

MOTIVATION:
In a distributed environment, several processes may proceed independently of each other
until one process needs to interrupt the other process by transferring data to it. Data sender
needs to get an instant respond on the data sent, is not allowed to proceed until an answer
from the data receiver is obtained. Such request/respond communication is used, for
example, by people gathering at the same time for chatting or instant messaging.

PROBLEM DESCRIPTION:
Assume that there are two processes running independently (Figure 73). Process 1 produces
data for transferring to another process. Process 2 requires data produced by Process 1 in its
calculations. Process 1 will provide data only if the request on transmission of this data from
another process in received.

Figure 73

SOLUTION:
In order to allow transportation of data from one location to another, ensuring that the sender
is blocked until it receives an answer from the receiver, use a synchronous transfer. The
synchronous transfer is established through two placeholders, which temporally store data
requests and responds. The sender is blocked until the requested data becomes available in
the correspondent placeholder.

Implementation of Solution:
The list of instructions below describes how to implement the SYNCHRONOUS TRANSFER
pattern:

• Define the transition, which initiates the data exchange. Break this transition into two
parts: for sending the data request and receiving the requested data, i.e. Send and
Receive.

• Connect transitions Send and Receive through a waiting place, where the initiator of
the data exchange will reside until the requested data becomes available.

• Introduce place Request where the requests posted by the initiator of the data
exchange will be stored until the receiver processes the request.

• Introduce place Respond into which the requested data will be placed.
• Connect transition Send to transition Ackn through placeholder Requests, indicating

the flow of data (requests) by direction of the arrows.

 71

• Similar, connect transition Ackn to transition Receive through placeholder Respond,

indicating the flow of data (responds) by direction of arrows.
• Note that in such synchronous communication the exchange of data is possible only if

the sender has knowledge about data available at the receiver side. For reference to
the specific data, the identifiers associated with this data are used (see ID
MATCHING pattern).

Figure 74 The Synchronous Transfer

Figure 75 demonstrates how to incorporate synchronous data transfer into the net presented
in the Problem description section.

Figure 75

APPLICABILITY:
Apply this pattern to

- Provide data produced by one actor to another actor, which sent a data request,
ensuring that the initiator of communication, i.e. the one that posted a data request, is
blocked and will be resumed only when an answer on the data request becomes
available.

 72

CONSEQUENCES:
This pattern can be applied in situations when one actor (for instance, an application) sends a
message and expects to receive the message back.

This pattern is similar to the ASYNCHRONOUS TRANSFER pattern and the RENDEZVOUS
pattern, because they address similar kind of problems in the context of data transportation in
the distributed environment.

In comparison to the ASYNCHRONOUS TRANSFER, the disadvantage of this pattern is that
a sender is blocked until a receiver finished processing. Similar to RENDEZVOUS, this
pattern needs to have synchronization between a sender and a receiver, however in this
pattern it is done sequentially, while in the RENDEZVOUS pattern concurrently.

EXAMPLES:

• Any kinds of meetings, where an instant input from participants of the discussion is
expected

• Subroutine calls from a program on one machine to library routines on another
machine

RELATED PATTERNS: this pattern uses ID MATCHING pattern. This pattern is similar to the
ASYNCHRONOUS TRANSFER pattern and the RENDEZVOUS pattern.

 73

PATTERN 25: RENDEZVOUS
ALSO KNOWN AS:

INTENT: to allow multiple actors to broadcast and discover data objects concurrently

MOTIVATION:
In some situations, it is necessary to model a channel, which only transfers data messages
but does not store them, allowing sending and receiving of the messages at the same time.

PROBLEM DESCRIPTION:
Assume that there are two processes running independently (Figure 76). Process 1 produces
data for transferring to Process 2, based on the data provided by Process 2. Process 2
correspondingly processes data received from Process 1 and sends the results of processing
back to the Process 1. In order to avoid unnecessary waiting, both Process 1 and Process 2
need to be able to exchange, i.e. send and receive, data concurrently.

Figure 76

SOLUTION:
In order to allow concurrent exchange of data between multiple actors, use rendezvous. The
rendezvous establishes concurrent exchange of data between multiple actors by connecting
senders and receivers to a single transition, which will discover the data available for sending
and broadcast it to the correspondent recipient(s).

Implementation of Solution:
The list of instructions below describes how to implement the RENDEZVOUS pattern:

• For each of the actors, participating in concurrent data exchange, define input and
output places. The input places In1 and In2 provide data for broadcasting to the
recipients, and the output places Out1 and Out2 store the data received from a
sender.

• Connect input places to the transition Exchange, and connect transition Exchange to
the output places. As soon as both senders provide the data for broadcasting,
transition Exchange will fire putting the correspondent data to the output places.

 74

Figure 77 The Rendezvous

Figure 78 illustrates how to implement concurrent data exchange in the example presented in
the Problem description section. Note that transitions Send data and Process data are
merged into one transition Send data, which synchronizes concurrent communication of the
process 1 and process 2.

Figure 78

APPLICABILITY:
Apply this pattern to

- Facilitate concurrent exchange of data between two or more actors.

CONSEQUENCES:
This pattern is similar to the SYNCHRONOUS TRANSFER pattern and the
ASYNCHRONOUS TRANSFER pattern, because they address similar kind of problems in the
context of data transportation in the distributed environment. Although an advantage of this
pattern over the SYNCHRONOUS TRANSFER that it more efficient, the data producers and
consumers are tightly coupled and must run simultaneously for data delivery to occur.

 75

The RENDEZVOUS pattern can be applied for broadcasting the same data to multiple
recipients. The disadvantage of this pattern is that a sender and receivers are tightly coupled
to each other. If it is necessary to avoid dependency between sender and receivers, but to be
able to broadcast the same data to every recipient, instead of this pattern the
BROADCASTING pattern can be applied. The drawback of using the BROADCASTING
pattern is that it is based on the ASYNCHRONOUS TRANSFER and does not ensure that
targets will get data simultaneously.

EXAMPLES:

• two or more objects meeting at a preconceived time and place

RELATED PATTERNS: this pattern is similar to the SYNCHRONOUS TRANSFER,
ASYNCHRONOUS TRANSFER and BROADCASTING patterns.

 76

PATTERN 26: ASYNCHRONOUS ROUTER
ALSO KNOWN AS:

INTENT: to enable asynchronous transfer of data from a single source to a dedicated target,
providing loose coupling between the source and targets connected to it

MOTIVATION:
In some situations, there is a need to transfer data from a source to any of available targets
asynchronously. For this purpose the ASYNCHRONOUS TRANSFER pattern can be
applied, which allows the source and targets working independently, however requires tight
coupling between them. This means that the source delivers data directly to the target, while
requiring the data source to know all details of target recipients. Due to the tight coupling
between a source and targets, changes in any of the targets may directly affect the source,
thus providing low flexibility in targets manipulating.

PROBLEM DESCRIPTION:
Figure 79 presents the problem of direct addressing data messages between source and
targets. Transition source when sending a message mes knows exactly who will be the
receivers of the message, i.e. target1, target2 or target3 respectively. Meanwhile targets have
no knowledge about how the source selects a target and what information it uses for this
purpose.

Figure 79

For instance, adding of a new target, the information about which (for instance, the target
address) is not known yet, is not possible in this diagram. In addition, changes in any of the
targets directly affect the source, and may even influence the connection between the source
and the rest of the targets.

SOLUTION 1:
In order to decouple connection between a data source and a set of targets, which
communicate asynchronously, while ensuring that data sent by the source is received by a
target, to which it was dedicated, introduce an asynchronous router. The asynchronous router
will direct all data received from the source to a place, where it will be stored until the
dedicated target picks it up on its own initiative.

Implementation of Solution 1:
The list of instructions below describes how to implement Solution 1 of the
ASYNCHRONOUS ROUTER pattern:

• Introduce transition Route, and connect place source to it, providing the composite
data (mes,t), which includes an information object to be sent to a target and an
identifier of the target.

 77

• Introduce place temp, which will serve as a temporary storage and will store all data

(mes,t) sent by the source.
• Connect place temp to the targets. Provide the data to a target, by drawing an arc

from the router to a target. Note that data from the source to the temp is sent
asynchronously, as the ASYNCHRONOUS TRANSFER pattern describes.

• Add a transition guard to each of the targets to ensure that a target gets data
addressed specifically to it. For this, target itself must have an identifier and should be
aware of it. In Figure 80 target identifiers are encapsulated into the variables t1, t2,
and t3. The transitions guards examine the second element of the data available in
temp, i.e. the destination of the data, and compare it with own identifier (the ID
MATCHING pattern). Since targets identifiers are different, no two targets can
consume the same data (the pattern DETERMINISTIC XOR-SPLIT is used) at once.

• Note that the order in which data, which is routed from the source to temp, consumed
by a target transition is non-deterministic. In order to ensure that targets consume
data in the order of arrival, the data in place temp can be aggregated into a collection
by applying the AGGREGATE OBJECTS pattern, while manipulating data in a strictly
specified order can enabled by applying the QUEUE pattern.

Figure 80

SOLUTION 2:
In order to decouple connection between a data source and a set of targets, which
communicate asynchronously, while ensuring that data sent by the source is received by a
target, to which it was dedicated, introduce an asynchronous router. The asynchronous router
will direct a data directly to a dedicated target.

Implementation of Solution 2:
The list of instructions below describes how to implement Solution 2 of the
ASYNCHRONOUS ROUTER pattern:

• Introduce transition Route, and connect place source to it, providing the composite
data (mes,t), which includes an information object to be sent to a target and an
identifier of the target.

• Introduce for each of the target an input place, where the router will place a dedicated
data. As such for targets 1,2 and 3 introduce places temp1, temp2, and temp3.

• On the arcs connecting transition Route to target input places add a filtering
condition, which would examine data provided by the router and define whether it is
dedicated to the target, to which the input place corresponds. For instance, to

 78

examine whether a data supplied by the router was dedicated to a target1, compare
the identifier of dedicated target to the identifier of target1, i.e. if t=t1 then 1`mes else
empty. The obtained construct incorporates Solution 2 of the DETERMINISTIC XOR-
SPLIT pattern.

• Note that data from the source to every target input place temp is sent
asynchronously, as the ASYNCHRONOUS TRANSFER pattern describes.

Figure 81

APPLICABILITY:
Apply this pattern to

- Increase flexibility in manipulation with targets, to which a data source sends data
asynchronously.

- Decouple a source from targets, avoiding direct dependency between them.

CONSEQUENCES:
Application of this pattern allows decoupling a source from targets in two different ways.
Solution 1 stores all data routed from the source in a temporary data storage. However, this
has a consequence that a source must change the format of data to specify explicitly the
intended data recipient. From the target point of view, if initially the delivery of data was
organized and initiated by a source, then after applying this solution, targets should become
more active and take own initiative to get the data.

Solution 2 routes data from a source to an input place of a target, without involving the target
in the procedure of selecting a dedicated data. However, the drawback of this solution is that
the router must change each time a new target is added.

This pattern includes the ASYNCHRONOUS TRANSFER pattern to ensure that data is sent
asynchronously, and the DETERMINISTIC XOR-SPLIT pattern, which guarantees that every
data will be consumed by one-and-only-one dedicated target.

The major characteristic of this pattern is that a source, producing data for multiple targets,
sends data asynchronously so to a single dedicated target, but does not broadcast the same
to data to all targets. If it is necessary to broadcast data from a source to a set of targets, so
that every target receives the same data, apply the BROADCASTING pattern.

Since this pattern is based on asynchronous communication, the data source does not know
whether a target got the data sent to it. If for example the connection was broken, but the
target got the data, the source may try to retransmit the same data again. Therefore, the

 79

drawback of this pattern is that it does not guarantee that no duplicated data is transferred. In
order to address this problem this pattern can be combined with Solution1 of the
REDUNDANCY MANAGER pattern.

EXAMPLES:

• The secretary of a department is responsible for distribution of holiday cards. Instead
of delivering a card to every employee of the department, the secretary puts the cards
to the post-box. The employee will pick up the card on his own initiative.

RELATED PATTERNS: this pattern includes the DETERMINISTIC XOR-SPLIT ,
ASYNCHRONOUS TRANSFER and ID MATCHING patterns. This pattern is similar to the
BROADCASTING pattern, and can be combined with the REDUNDANCY MANAGER
pattern.

 80

PATTERN 27: ASYNCHRONOUS AGGREGATOR
ALSO KNOWN AS: XOR-join

INTENT: to provide the holistic view on data, produced by multiple unrelated sources, through
asynchronous data aggregation

MOTIVATION:
Often in situations involving the ASYNCHRONOUS ROUTER pattern, i.e. when a data source
produces data dedicated to a certain target and transfers it asynchronously, while ensuring
the loose coupling between the data source and targets correspondingly, there is a need to
get an overview of data produced by the targets. Sometimes it is desirable to get the holistic
view on all data produced by the targets, rather then sampling data from every target directly.

PROBLEM DESCRIPTION:
Figure 82 presents a solution of the ASYNCHRONOUS ROUTER pattern. The targets
target1, target2 and target3 receive the data sent asynchronously from the source through the
Router. Assume that after processing the received data by the correspondent targets it is
necessary to show these data to an external actor, which does not want communicate to the
targets directly, but have an access to all information stored in a single location.

Figure 82

SOLUTION:
In order to provide the holistic view on data, delivered asynchronously from multiple unrelated
sources, and abstract from sources’ details, use an asynchronous aggregator. The
asynchronous aggregator is a placeholder, which aggregates data delivered asynchronously
from different sources and serves as a mediator between the data consumer and the data
sources.

Implementation of Solution:
The list of instructions below describes how to implement the ASYNCHRONOUS
AGGREGATOR pattern:

• Introduce an Aggregate place, where data provided as a result of processing by
target 1,2 and 3 will be stored until an external Process takes initiative to consume
the data available at a moment.

• Connect the available target(s) to place Aggregate and supply together with data
produced by a target an identifier of the correspondent target, if required. Note that
any target may deliver data to the placeholder Aggregate any time, without being

 81

dependent on other targets. This means that although Aggregate placeholder collects
the data from the targets, it does not synchronize the targets and does not put a
require targets to deliver data concurrently.

• Figure 83 illustrates asynchronous aggregation of data delivered by targets. Note that
every new data delivered by a target is represented by a separate token. If there is a
need to organize data into a collection, the AGGREGATE OBJECTS pattern can be
applied. The collection achieved in this way can by ordered by applying the QUEUE
pattern.

Figure 83

APPLICABILITY:
Apply this pattern in combination with the ASYNCHRONOUS ROUTER pattern to

- Aggregate data asynchronously delivered from multiple sources into a single place
- Isolate a data consumer from details of data sources.

CONSEQUENCES:
The ASYNCHRONOUS AGGREGATOR pattern corresponds to the ASYNCHRONOUS
ROUTER pattern, and is based on the principles of the ASYNCHRONOUS TRANSFER.
In this pattern, all data sources can work independently of each other and may deliver data
any time without waiting for other sources to be ready.

The data aggregator serves as a sort of mediator between data producers and data
consumer, hiding the details of data producers from the data consumer, and thus loosing out
connection between them.

EXAMPLES:

• In order to pass a course, students must finish a personal assignment. Instead of
allowing students to contact the course instructor directly, all assignments should be
placed on the web-site, from which the instructor can pick them up when it is suitable
for the instructor.

RELATED PATTERNS: this pattern corresponds to the ASYNCHRONOUS ROUTER pattern,
and can be combined with the AGGREGATE OBJECTS pattern.

 82

PATTERN 28: BROADCASTING
ALSO KNOWN AS:

INTENT: to allow broadcasting of data from a single source to multiple targets, avoiding direct
dependency between them

MOTIVATION:
In some situations, there is a need to transfer some data from a single source to a set of
targets, so that all targets receive the same information. This can be done using the
RENDEZVOUS pattern, which allows distributing data to multiple targets concurrently.
However, the data exchange achieved in this way requires tight coupling between the source
and targets, resulting in low flexibility. Moreover, direct addressing from a source to targets
can be cumbersome, when the number of targets and other target-related information is not
known in advance.

PROBLEM DESCRIPTION:
Figure 84 presents the problem of direct addressing the data messages between source and
targets. In order to broadcast the same data mes to several targets, the source needs to be
connected to each of the targets, thus providing data directly to each of them. If the number of
target data recipients varies, the source will be directly affected.

Figure 84

In terms of programming, this would lead to recompiling the source each time a new
component is added or removed. Thus, the tight coupling between a source and targets gives
no flexibility in manipulation of targets.

SOLUTION:
In order to loose out the connection between a source and targets, ensuring that the same
data is broadcasted to each of the targets, decouple the source from the targets by
introducing an intermediate placeholder, where data transferred from the source to the targets
will be collected and stored. The source will provide data to the placeholder, and targets will
take the data from this place on their own initiative.

 83

Implementation of Solution:
The list of instructions below describes how to implement the BROADCASTING pattern:

• Merge the places connecting the source and the targets in one place Router. Note
that it is possible to aggregate all data into a collection as it is described in the
AGGREGATE OBJECTS pattern.

• Connect the merged place Router to the targets. Provide the data mt to a target, by
drawing an arc from the router to a target. Return the data back to the router, so that
other targets can get the same information.

Figure 85

APPLICABILITY:
Apply this pattern to

- Broadcast data from a single source to multiple targets, so that every target receives
the same data.

- Increase flexibility in manipulation of targets by decoupling them from the source.

CONSEQUENCES:
The BROADCASTING pattern provides a loose coupling between a source and targets,
ensuring that every target gets the same data. The advantage of this pattern is that the
source does not need to care any more about the delivery of data to targets, but only to the
router. Targets themselves take care of consuming the data from the router.

Although BROADCASTING ensures that all targets get the same data, it is not guaranteed
that every target will consume the data only once. In order to solve this problem, this pattern
can be combined with Solution 2 of the REDUNDANCY MANAGER pattern.

EXAMPLES:

• The proceeding of a conference by decision of a chief of the department must be
distributed to all employees. One exemplar of proceedings is placed in the secretary
office. In order to track that all employees processed the material, a list with the
names of the employees is attached to the proceedings. Employees take the
proceedings on their own initiative and to indicate that they already processed them,
put their signature on the list.

RELATED PATTERNS: this pattern can be combined with the AGGREGATE OBJECTS
pattern and the REDUNDANCY MANAGER pattern.

 84

PATTERN 29: REDUNDANCY MANAGER
ALSO KNOWN AS:

INTENT: to prevent transfer of duplicated data between loosely-coupled actors,
communicating asynchronously

MOTIVATION:
When sending an information object from one place to another, it is sometimes undesirable
that the sender retransmits the same data again. In the business context, for instance, it is
undesirable to send the same bill to the customer twice.

PROBLEM DESCRIPTION:
Figure 86 presents the solution of the ASYNCHRONOUS ROUTER pattern. In this net, the
source does not know if a target received the data message, and how many of such
messages have been sent. Assume that during the data transfer an interrupt occurred, but a
target did process the data. Since the communication is asynchronous, the source does not
know if the target received the data, and can transfer the same data again.

Figure 87 presents the solution of the BROADCASTING pattern. In this net, the same data
should be transferred through the router to all targets, therefore after sampling data from the
Router a target returns the data back. However, it is not guaranteed that every target will
consume the data only once.

Figure 86

Figure 87

SOLUTION 1:
In order to avoid redundant data to be asynchronously transferred from a single source to a
dedicated target, apply a state-dependent FILTER. The state, associated with a number of
times a data was transmitted, defines whether the data will be sent to a target or will be
filtered out.

This solution is valid under an assumption that every data message has a unique identifier
associated with it.

Implementation of Solution 1:
The list of instructions below describes how to implement Solution 1 of the REDUNDANCY
MANAGER pattern:

• Ensure that data elements available in source are coupled to a unique identifier, for
instance (data_id, data_value).

• Create a list of identifiers lid of type ListID, which stores each data identifier only
once. Before sending a data element to the router, check whether an identifier
associated with the data element is not a member of the list lid. If the identifier is not

 85

in the list, transfer data message to the router, otherwise discard the data message,
so that no new attempt to send a duplicated data message happens. Note that the
choice between execution of transitions discard and send is made according to the
DETERMINISTIC XOR-SPLIT pattern.

• The function of checking the inclusion in the list is shown below:
fun elt(mid,[])=false| elt(mid, h::queue)= if (mid=h) then true else elt(mid, queue);

Figure 88

SOLUTION 2:
In order to avoid redundant data to be asynchronously broadcasted from a single source to
multiple targets, apply the Solution 1 of the DETERMINISTIC XOR-SPLIT pattern. This will
ensure that every target will process only new data, and no data read by the target will be
read multiple times.

Implementation of Solution 2:
The list of instructions below describes how to implement Solution 2 of the REDUNDANCY
MANAGER pattern.

• Modify the format of data stored in place router in order to associate every data with a
list of targets, by which this data was received. When data was broadcasted to all
targets, the list of targets associated with the data will contains identifiers of all
targets.

• When providing a data to the transition, provide also a correspondent targets’ list.
Check if the data was not yet received by a target, by adding a transition guard
[not(elt(target_id,list_of_targets))].

• If a target is not an element of the targets’ list, then this target did not receive this
data yet. In this case, the target may receive the data, send it back to the router, while
updating the target’s list. The condition in the transition guard ensures that the target
will not read the same data again.

 86

Figure 89

Because of the synchronous communication between the router and the targets, the data,
consumed by all targets, may accumulate in the Router. To avoid this, combine this pattern
with the BLOCKING STATE-INDEPENDENT FILTER pattern for checking the size of a list of
targets, associated with every data and removing the correspondent data from the router
place in case of condition fulfillment. Assuming that the total number of targets is known in
advance, it is possible to withdraw data, which was broadcasted to all targets. Figure 90
demonstrates this functionality by means of the Withdraw data transition and arcs connected
to it.

Figure 90

 87

APPLICABILITY:
Apply this pattern in combination with the BROADCASTING and ASYNCHRONOUS
ROUTER patterns to avoid transmission of duplicated data to decrease the redundancy of
data transmitted asynchronously from one place to another.

CONSEQUENCES:
This pattern helps to avoid the duplicates of data to be occasionally retransmitted or
processed. In its solutions, this pattern uses the FILTER and the DETERMINISTIC XOR-
SPLIT patterns.

EXAMPLES:

• Money transactions, where the same bill should not be paid multiple times.
• Subscription requests, where the same user should be registered only once.

RELATED PATTERNS: this pattern uses the DETERMINISTIC XOR-SPLIT pattern and can
be combined with BLOCKING STATE-INDEPENDENT FILTER.

 88

PATTERN 30: DATA DISTRIBUTOR
ALSO KNOWN AS: DATA DECOMPOSITION, DATA SPLIT

INTENT: to support parallel data processing by distributing data between several independent
actors

MOTIVATION:
In most business processes and information systems, where continuously growing amount of
data for processing is involved, there is a need to improve the processing efficiency by
introducing the data parallelism, which relates to both flow and structure of the information.
Depending on the processing context, the nature and complexity of data, it might be
necessary to involve several either identical or specialized actors in processing data
concurrently, rather then letting a single actor doing all work sequentially instead.

PROBLEM DESCRIPTION:
Consider an automobile factory, which produces car components required for car assembly.
The sequential production of four wheels by a single actor, for instance, results in much
longer waiting time before the process of car assembling can start, then single-wheel
production by four independent actors. Similar, a bunch of other car units, required for
assembly, can be produced faster by several specialized actors then by a singe generic one.

SOLUTION:
In order to scale the throughout of processing, use a data distributor. The data distributor
takes the compound data unit as an input and distributes it between several concurrent
processing streams, either specializing or performing the same set of operations.

Depending on the data structure, the complexity of data, and the context of data processing,
the data distributor either spreads the input data equally or divides it among several different
places for independent processing.

Implementation of Solution:
The list of instructions below describes how to implement the DATA DISTRIBUTOR pattern:

• Introduce a new transition Distribute, which will distribute the data received from the
source place In between a set of other locations.

• Define the distribution rules, which specify what data is to be provided for each of the
outgoing places of transition Distribute. Note that two types of data distribution can be
applied, i.e. replication of input data and correspondent distribution of replicas
between all outgoing places, or decomposition of input data into smaller parts. Figure
92 and Figure 93 illustrate data replication and data decomposition correspondingly.

• Specify the distribution rules on the arcs, connecting transition Distribute and
outgoing places, either explicitly or encapsulate them into functions.

Figure 91

Figure 92 illustrates distribution of data replicas (a,b,c) received from place In between the
outgoing places Out1, Out2 and Out3.

 89

Figure 92 Distributing replicated data

Figure 93 illustrated distribution of data (a,b,c) received from place In and decomposed into
smaller parts, between the outgoing places Out1, Out2 and Out3.

Figure 93 Distributing decomposed data

APPLICABILITY:
Apply this pattern to

- Support parallel processing of data.
- Decompose a single compound request from a client into several simpler requests

and distribute them for parallel processing.

CONSEQUENCES:
This pattern supports distribution of data over multiple places for independent processing.
Typically, after processing the data, it is necessary to combine the results of processing back
into a single data unit. This can be done by applying the DATA MERGE pattern.

For concurrent distribution of data between several places, this pattern uses communication
of the RENDEZVOUS type.

The DATA DISTRIBUTOR pattern assumes a direct dependency between the source of data
and targets processing it. This dependency can be removed by applying the
BROADCASTING pattern for transferring the same data to all targets or by applying the
ASYNCHRONOUS ROUTER pattern for transferring data for dedicated processing to a
specific target.

EXAMPLES:

• To distribute the load between several processors a complex process is divided into
several threads, which are distributed over available processors.

 90

• Parallel servers and data mining applications are examples of distributing the function

that the application is performing among the tasks. Each task operates on the same
data but does something different.

• Transferring products from an organization to customers

RELATED PATTERNS: this pattern is similar to the BROADCASTING pattern and the
ASYNCHRONOUS ROUTER pattern. This pattern should be used in combination with the
DATA MERGE pattern. It uses RENDEZVOUS pattern in its solution.

 91

PATTERN 31: DATA MERGE
ALSO KNOWN AS: DATA COMPOSITION

INTENT: to compose a single information object out of several smaller ones, when all parts
required for composition become available

MOTIVATION:
The DATA DISTRIBUTOR pattern is applied to scale the throughput of processing based on
ability to decompose compound data into independent processing streams, performing the
same or distinct types of operations. Typically, after the results of processing become
available there is a need to merge them back into one entity. Since composite data parts are
produced in parallel, but it is not guaranteed that they all are delivered at the same time, it is
necessary to synchronize the moment of data merge.

PROBLEM DESCRIPTION:
Consider the process of car assembling. The assembling of a car may start only when all
required parts, i.e. an engine, wheels, a car frame, etc. produced by independent
manufactures, become available.

SOLUTION:
In order to merge data units produced by independent actors into a single compound data
entity, synchronize the outputs of actors by means of the data merge transition. The data
merge transition will wait until all actors finished their processing, and produce a single
compound data entity when all composite parts become available.

Implementation of Solution:
The list of instructions below describes how to implement the DATA MERGE pattern:

• Introduce a new transition Merge, which will synchronize the delivery of data units a,
b, and, c from input places In1, In2, and In3.

• Connect transition Merge to place Out, where a single compound data entity (a,b,c)
formed out of transition inputs will be transferred.

• Note that the concurrent data exchange in this solution incorporates the
RENDEZVOUS pattern.

Figure 94

APPLICABILITY:
Apply this pattern to

- Synchronize several parallel branches, each of which delivers a data unit required for
merging into a compound data entity.

 92

CONSEQUENCES:
This pattern should be used in combination with the DATA DISTRIBUTOR pattern in order to
form data decomposition-reconstruction construct.

Construction of composed data entity requires all data units from existing inputs to be
available, which poses limitation on usage of this pattern in combination with the
ASYNCHRONOUS ROUTER or BROADCASTING patterns. These patterns are based on the
ASYNCHRONOUS TRANSFER, rather then the RENDEZVOUS. Improper combination of
these patterns may lead to deadlocks and make models non-operational.

EXAMPLES:

• Information from multiple accounts is summarized to provide a single unified portfolio
view to the customer

• Synchronized delivery of requests from multiple channels to a back-end application

RELATED PATTERNS: this pattern corresponds to the DATA DISTRIBUTOR pattern; it uses
RENDEZVOUS pattern in its solution.

 93

PATTERN 32: DETERMINISTIC XOR-SPLIT
ALSO KNOWN AS:

INTENT: to allow at most one transition out of several possible to execute, based on
fulfillment of data conditions, which mutually exclude each other

MOTIVATION:
In many systems, there are data structures, which can be accessed by several tasks
concurrently. However, it is not allowed that several tasks execute at the same time, i.e. only
one task out of several possible need to be selected. In terms of safety requirements for
event-driven systems, it is allowed that after a certain event only one of two possible events
happen, but not both. Similar, in some situations there is a need to ensure that at most one
process can be engaged in a specified activity at a time.

PROBLEM DESCRIPTION:
Assume that a place data and two transitions Activity1 and Activity2, which have access to
data stored in this place, are given. Depending on the value of data supplied by place data,
either the value of data d is bigger than 5 or not more then 5, only one of the transitions
Activity1 and Activity2 may execute. In the net in Figure 95 both transitions are enabled,
however the choice of an activity is not explicitly defined.

Figure 95

SOLUTION 1:
In order to define explicitly which transition out of several possible can be selected for
execution, associate all transition with data conditions, which mutually exclude each other.
Evaluation of mutually excluding data conditions results in selection of at most one transition.

Implementation of Solution 1:
The list of instructions below describes how to implement Solution 1 of the DETERMINISTIC
XOR-SPLIT pattern:

• Connect place data, where data for execution of activities is stored, to the transitions
Activity 1 and Activity2, specifying the flow of data d by direction of connecting arcs.

• Add data conditions into the transition guards, ensuring that they cover all possible
data values, but mutually exclude each other. In Figure 96, a guard of transition
Activitiy2 evaluates to true and enables the execution of this transition if the data d is
bigger then 5. A guard of transition Activity 1 evaluates to true in all the rest cases,
i.e. if the value of data d is at most 5. Note, that since the data included in guard can
be of composite nature or more complex type, several conditions may be specified in
a guard respectively.

 94

Figure 96

SOLUTION 2:
In order to define explicitly which transition out of several possible can be selected for
execution, but to make data conditions transparent for the transitions, associate all transition
with data conditions, which mutually exclude each other, and make evaluation of these
condition in advance. Evaluation of mutually excluding data conditions results in selection of
at most one transition.

Implementation of Solution 2:
The list of instruction below describes how to implement Solution 2 of the DETERMINISTIC
XOR-SPLIT pattern:

• Decouple place data, which provides data inputs to transitions Activity1 and Activity2,
by introducing in between two intermediate places Data Act1 and Data Act2. Places
Data Act1 and Data Act2 store only data that satisfies criteria of Activity1 and
Activity2 respectively.

• Introduce transition Define branch in order to move the responsibility for evaluation of
data conditions and selection of an activity away from the activities.

• Connect place data to transition Define branch, providing the input data d. Connect
this transition to places Data Act1 and Data Act 2, and specify on the arcs data
conditions “if d>5 then 1`d else empty” and “if d<=5 then 1`d else empty”, which must
be satisfied for selecting the corresponding branch. Note that the data conditions
mutually exclude each other.

• As a result of evaluation of condition “if d>5 then 1`d else empty” data d will be
placed into the Data Act2 if the value of data d is bigger then 5, otherwise the
condition leading on the arc to Data Act1 will evaluate to true, and data d will be
correspondingly placed for consumption by Activity 1.

Figure 97

APPLICABILITY:
Apply this pattern to

- Make explicit selection of at most one activity, event, task, etc. modeled by means of
transition based on the characteristics of data provided as an input.

 95

CONSEQUENCES:
The DETERMINISTIC XOR pattern provides two solutions. Apply Solution 1 if it is necessary
to involve the transitions, selection of one from which needs to be made, into the evaluation of
data conditions directly. Solution 1 extends the BLOCKING STATE-INDEPENDENT FILTER
pattern, which allows input data to come through only if a data condition specified in a
transition guard is satisfied. In contrast to the BSI FILTER pattern, this pattern covers all
range of values associated with input data, ensuring that all input data can be unambiguously
categorized according to mutually excluding data conditions.

In its turn, Solution 2 allows transitions, at most one of which can be selected, to abstract from
evaluation of data conditions involved in the selection procedure, thus making data
transparent to transitions.

From the control-flow point of view, Solution 1 and Solution 2 differ in the moment of taking a
decision for selecting a transition for execution. In Solution 1, this decision is made on the
latest moment, while in the Solution 2 as early as possible.

This pattern addresses problem of scheduling nature, similar to the ones addressed in the
NON-DETERMINISTIC XOR and OR patterns.

EXAMPLES:

• Computer resources that can only be manipulated by one task at a time

RELATED PATTERNS: this pattern extends the BLOCKING STATE-INDEPENDENT FILTER
pattern. This pattern is similar to the NON-DETERMINISTIC XOR-SPLIT and OR patterns.

 96

PATTERN 33: NON-DETERMINISTIC XOR-SPLIT
ALSO KNOWN AS:

INTENT: to allow any transition out of several possible, but satisfying the same data
condition, to execute

MOTIVATION:
The DETERMINISTIC XOR-SPLIT pattern is often applied for allowing at most one transition
out of several possible to execute, based on fulfillment of data conditions, which mutually
exclude each other. In some situations, there is a need to make such mutually excluding data
conditions less strict. For example, two types of resources need to handle tree types of tasks.
Each group of resources specializes in carrying out only one specific task; however, a task of
more generic type can be executed by any kind of resource. Being able to relax mutually
exclusive data conditions can result in more flexible work distribution.

PROBLEM DESCRIPTION:
Figure 98 presents solution 1 of the DETERMINISTIC XOR-SPLIT pattern. In this net, there is
a strict separation of data conditions on basis of mutual exclusion. As such, Activity1 may
execute if the value of data d provided by place data is bigger than 5, and Activity2 may
execute if the value of data does not exceed 5. Now assume that we want to specify that
data, the value of which is bigger then 5 but less then 10, can be handled by any of the
activities, still ensuring that only one activity may execute at a time.

Figure 98

SOLUTION:
In order to allow non-deterministic selection of at most one transition out of several possible,
associate every transition with overlapping data condition.

Implementation of Solution:
The list of instructions below describes how to implement Solution of the NON-
DETERMINISTIC XOR-SPLIT with overlapping data conditions pattern:

• Connect place data, where data for execution of activities is stored, to the transitions
Activity 1 and Activity2, specifying the flow of data d by direction of connecting arcs.

• Add data conditions into transition guards, ensuring that they overlap in the part
common to both transitions. As Figure 99 illustrates, data, values of which vary
between 5 and 10 can be processed by any of the activities, while all other values out
of the specified range can be handled by only one activity. Note that the choice of
activities, when common condition is satisfied, is non-deterministic. It is not possible
to predict which of the activities will process values satisfying the range of overlapping
values.

 97

Figure 99

Figure 99 contains three ranges of data values, i.e. d<=5 for transition Activity 1, d>10 for
transition Activity 2, and 5< d <=10, which represents the overlapping condition for both
transitions respectively. Note however that the range of data values only for overlapping data
conditions should be considered for realizing non-deterministic choice.

Similar, if only one of two transitions should be selected non-deterministically in the range of
all possible data values, the data conditions can be omitted and the net presented in Figure
100 can be used instead.

Figure 100

APPLICABILITY:
Apply this pattern to

- Realize non-deterministic selection of a task from a set of possible tasks, while
ensuring that only one task may execute at a time.

CONSEQUENCES:
This pattern addresses the problem of scheduling nature, similar to the ones addressed in the
DETERMINISTIC XOR-SPLIT and OR patterns.

In comparison to the mutually excluding data conditions, overlapping conditions in some way
extend the way of handling data. Note that overlapping and mutually excluding data
conditions can be combined. Opposite to overlapping conditions, one can specify insufficient
conditions, i.e. when all range of data except a certain part is being handled in handled
deterministically. For instance, if one task handles data with value that is smaller then 5, and
another task handles data values that bigger then 10, then the data in range from 5 to 10,
won’t be handled at all; this may cause undesirable blocking or even deadlock. Insufficient
conditions can be applied if one can ensure that only data in specified range is considered,
however usage of insufficient data conditions is not desirable.

EXAMPLES:

• Dynamic assigning of generic tasks between two specialized groups of resources

RELATED PATTERNS: this pattern is similar to the DETERMINISTIC XOR-SPLIT and OR
patterns

 98

PATTERN 34: OR
ALSO KNOWN AS:

INTENT: to allow any number of tasks to be selected for execution based on fulfillment of a
certain data condition

MOTIVATION:
The DETERMINISTIC XOR-SPLIT pattern allows only one of two possible tasks execute
based on the data conditions mutually excluding each other. In some situations, however,
there is no need to pose strict conditions on the number of tasks, which may execute at a
time, but allow it vary and execute concurrently if a certain condition is fulfilled. For instance,
when distributing work items, an employee gets a work item if he specializes in the requested
type of work, however generic requests for attending the meetings must be executed by all
employees.

PROBLEM DESCRIPTION:
Solution of the NON-DETERMINISTIC XOR-SPLIT, presented in Figure 101, allows at most
one task, does not matter which, from two available tasks to execute if a condition common to
both tasks is satisfied. Although this pattern allows selection of multiple tasks, it does not
allow multiple tasks to execute concurrently.

Figure 101

SOLUTION:
In order to enable execution of all from several available transitions in case of fulfillment a
common to all transitions data condition, but at most one task in case of fulfillment of mutually
excluding conditions, extend Solution 2 of the DETERMINISTIC XOR-SPLIT with overlapping
data conditions.

Implementation of Solution 1:
The list of instructions below describes how to implement the OR pattern:

• Modify Solution 2 of the DETERMINISTIC XOR-SPLIT pattern by introducing the
overlapping data conditions on the arcs from transition Define branch to places Data
Act1 and Data Act2, which provide input data to Activity1 and Activity2 respectively.

• Based on the rule of transition firing, specified data will be placed in the outgoing
place if the condition on the arc connecting transition and the outgoing place is
satisfied. As such, if the value of data supplied by place data is in the range between
5 and 10, then this data will be provided as an input to both transitions Activity1 and
Activity2. However, if data value is less then 5 then only transition Activity 2 will
execute, and if data value is bigger then 10, then it will be provided as an input to
transition Activity2.

 99

Figure 102

APPLICABILITY:
Apply this pattern to

- Allow one or more tasks to execute concurrently depending on fulfillment of data
conditions associated with the tasks.

CONSEQUENCES:
Similar to the Solution 2 of the DETERMINISTIC XOR-SPLIT pattern, in this pattern tasks
processing data, are not aware of conditions based on which the supplied data was selected.
This allows data conditions be transparent and tasks to concentrate on actual processing of
data.

Depending on which data conditions are satisfied, this pattern is able to behave as the
ASYCNHRONOUS ROUTER or DATA DISTRIBUTOR pattern. However, the selection of the
correspondent pattern, able to merge multiple branches present in this pattern, is not
straightforward. Selection of the DATA MERGE pattern would lead to blocking if this pattern
behaves as ASYNCHRONOUS ROUTER, or would miss synchronization point if the
ASYNCHRONOUS AGGREGATOR is used in combination with the DATA DISTRIBUTOR.
Therefore, if this pattern is applied, use the DATA MERGE pattern in combination with
Booleans variables, indicating whether a correspondent branch was selected.

EXAMPLES:

• Scientific researches working in the same department work on individual research
tasks separately, however they all attend the group meetings.

RELATED PATTERNS: this pattern extends Solution 2 of the DETERMINISTIC XOR-SPLIT
pattern. This pattern can be combined with the DATA MERGE pattern.

 100

CPN PATTERN RELATIONSHIPS

The 34 CPN patterns presented in this report, together with relationships between them, form
a pattern language. In order to classify the CPN patterns we examine the nature of
relationships between the patterns. We will use three types of primary relations, i.e.
specialization of a problem, use in a solution, and extension of an implementation, and two
types of secondary relations, i.e. problem similarity, and solutions' combination, to describe
the pattern relationships. Some of the relationship types are based on the Zimmer
classification [12].

The main purpose of this classification is to provide a holistic view on the catalog of patterns
listed in this report, providing a means for selecting a number of patterns and determining
how they can help in solving a problem under hand. The selected types of relationships can
help to trace other patterns related to a chosen pattern, thus allow estimating an overall
problems complexity, the tradeoffs made, and compare the chosen pattern with other patterns
similar to it in order to select an optimal solution for a problem in the specific context.

Note that the types of the selected pattern relations are used in the description of every
pattern. The details regarding combining one pattern with another one, or similarities between
patterns, which are not indicated in the relationship diagram (Figure 103), can be found in the
Consequences and Related patterns sections of a chosen pattern.

Primary relations

Problem-oriented

Pattern A is a specialization of more generic pattern B.
Specific pattern A deals with a specialization of the
problem the generic pattern B addresses, has a similar
but more specialized solution. Pattern A includes all
properties of pattern B, but adds some more
restrictions by adding some specialized characteristics.

A Bis a specialization of

Example: patterns Priority Queue and FIFO Queue are both specializations of the Queue
pattern

Solution-oriented

Pattern A uses pattern B in its solution. When building
a solution for problem addressed by pattern A, one
sub-problem is similar to the problem addressed by
pattern B. Thus, the solution of pattern B is a
composite part of the solution of pattern A. Whenever
pattern A is used, pattern B should also be considered,
since it makes a part of A. All instantiations of pattern A
use pattern B.

A Buses

Example: Lock Manager uses ID Matching, Asynchronous Router uses Asynchronous
Transfer.

Since many CPN pattern have multiple solutions, for a sake of clarity we will use mnemonics
"s1", "s2" and "s2" as identifiers for referring to Solution 1, 2, and 3 correspondingly, to make
relations between pattern solutions explicit.

 101

 102

Solution implementation-oriented

Pattern A syntactically extends pattern B. Pattern A
addresses a set of requirements to have more or
slightly different functionality then the pattern B
addresses. However, this is the implementation of B,
which is syntactically extended by A, rather then a
problem or a solution.

Example: implementation of Non-Blocking State-Independent Filter extends implementation of
Blocking State-Independent Filter.

Secondary relations

Pattern A is similar to pattern B. Pattern A addresses a
problem similar to the one addressed in pattern B. See
description of a pattern to find out in what sense the
pattern relates to the other pattern. Patterns A and B
can be considered as alternatives of each other;
compare them and select the one which fits the best.

Example: Asynchronous Transfer is similar to Rendezvous; Asynchronous Router is similar to
Broadcasting.

A B

A B

A Bextends

Pattern A can be combined with pattern B. None of the
patterns is a part of each other. Combining solution of
pattern B with solution of pattern A can help in solving a
more complex problem, then a single pattern solves in
isolation. Use this relation to find out other patterns,
which can be used in addition to pattern A.

Example: Shared Database can be combined with Copy Manager, Asynchronous Aggregator
can be combined with Aggregate Objects

103

Deterministic
XOR-split (s1,s2)OR

Non-deterministic
XOR-split

Translator
(s1,s2)

Blocking State-
Dependent Filter

extends

ID Manager

uses

ID Matching

Copy Manager

Shared Database

Aggregate Objects

Data Management

uses

Lock Manager

Queue
(s1,s2,s3)

Priority Queue

is a specialization
 of s1

Colored Inhibitor Arc
(s1,s2)

Capacity Bounding
(s1,s2,s3)

Asynchronous Router
(s1,s2)Asynchronous Transfer

Synchronous Transfer

Rendezvous
Broadcasting

Asynchronous
Aggregator

uses

Redundancy Manager

Data Merge Data Distributor

 Log Manager

Bi-Lock Managerextends

Random Queue

is a specialization
 of s1

FIFO Queue

is a specialization
 of s1

LIFO Queue

Inhibitor Arc

(s1,s2,s3)

s1 extends s1

s1 extends
s2 uses s2,
s3 uses s3

s1 uses s2 extends s3

s2 usesuses

uses

Blocking State-
Independent Filter

extends

uses

Non-blocking State-
Dependent Filter

extends

Non-blocking State-
Dependent Filter extends

s1
extends

uses s2

uses s2

s2
usesuses s2

s1 uses s1,
s2 uses s2

uses

uses

uses

uses

s3 uses

s1, s2, s3 use

s3 uses

extends

extends

Figure 103 CPN pattern relationship diagram

CLASSIFICATION OF CPN PATTERNS

Although the CPN pattern relationship diagram in Figure 103 allows navigating through the
catalog of the CPN patterns, it is not sufficient for classifying the patterns precisely and
unambiguously. In order to provide the means for selecting an appropriate pattern, we adopt
classification presented in [13] to categorize the CPN patterns.

As it was mentioned in the introduction, the CPN patterns aim to cover problems in the
domain where data and control-flow perspectives interplay. In this domain, three pattern
groups can be distinguished:

- patterns, where data perspective dominates, but which must be considered in the
context of the control-flow;

- patterns, where the control-flow perspective dominates, but which are data-based;
- patterns, where data perspectives and control-flow perspectives are equally important

and involved.

The intent of every pattern has been analyzed according to the following structure:
 <common components, diagnostic elements, supplementary components>.

Common components define the set of related meanings, by which different patterns can be
placed into one group. For instance, patterns addressing problems of creation new elements
or entities, belong to the same group with a common component create. Thus, this is the
intent of a pattern from the process (functionality) point of view.

Example: patterns, whose main intent is to manage or control something, will be
combined into the group with a common component control.

Diagnostic elements define the contrastive features, which distinguish the patterns belonging
to the same common component. For instance, patterns belonging to the same common
component control, i.e. control patterns, can involve different participants or differ by control
parameters.

Example: patterns, whose main purpose is to control such features as the order, the
throughput, the quantity, belong to the same group with a common component control
and can be distinguished by diagnostic elements Order, Throughput, Quantity
respectively.

Supplementary components address additional features for extended definitions of meanings.
This component addresses special circumstances of applying a pattern. This feature could be
applied to distinguish the pattern from other patterns belonging to the same common
component with the same diagnostic elements; however, multiple patterns may have the
same supplementary component.

The classification list below presents characteristics of patterns in the following format:

 Common component

o Diagnostic component
 Supplementary component

Control

o Order of information objects (Queue)
 by predefined scheduling policy (FIFO Queue, LIFO Queue, Random

Queue)
 by objects priority (Priority Queue)

o Availability/Consistency of information objects
 by regular replication (Copy Manager)

o Concurrent access to information objects
 by means of exclusive locks (Lock Manager)
 by means of shared and exclusive locks (Bi-Lock Manager)

o Throughput of information objects
 by inspecting content (Blocking State-Independent Filter, Non-

blocking State-Independent Filter)

 104

 by inspecting state (Blocking State-Dependent Filter, Non-Blocking
State-dependent Filter, Redundancy Manager)

o Number of objects in place
 by bounding the place capacity (Capacity-Bounding)

Discern
o Information objects

 by identities (ID Matching)
 by visibility (Shared Database)

Choose

o 1 branch deterministically (Deterministic XOR-split)
o 1 branch non-deterministically (Non-deterministic XOR-split)
o 1 or more branches deterministically (OR)

Create
o Information objects

 by unique generation (ID Manager)
 by decomposing into parts (Data Distributor)

Assemble
o Information objects

 by aggregating into a collection (Aggregate Objects)
 by synchronizing composite parts (Data Merge)
 by asynchronous merging (Asynchronous Aggregator)

Access

o Information objects
 by read/write operations (Data Management)

Inspect
o "Non-containment" property of place (Colored Inhibitor Arc)
o "Zero"-property of place (Inhibitor Arc)

Monitor
o Process execution-relevant information

 by data logs (Log Manager)

Transform
o Information objects

 by adjusting the data format (Translator)

Transfer
o Information objects

 Asynchronously
• directly

o from a source to a target: 1-to-1 (Asynchronous
Transfer)

• indirectly
o from a source to one of several targets: 1-to-1

(Asynchronous Router)
o from a source to multiple targets: 1-to-N

(Broadcasting)
 Synchronously

• between two actors: 1-to-1 (Synchronous Transfer)
 Concurrently

• from N sources to M targets: N-to-M (Rendezvous)

 105

RELATED WORK

The concept of patterns has been originated by Christopher Alexander, who defined them in
the architectural context. Alexander was the first one who proposed a format for documenting
patterns and combined patterns into a pattern language [14]. The pattern initiative was
supported and resulted in a set of significant milestones, i.e. pattern languages, in other
application fields and domains.

In the past years, an idea of patterns became popular in object-oriented software community.
As an evidence of this, we refer to the 23 design patterns by Gamma [4], and their numerous
successors, such as:

- Patterns for knowledge and software reuse by Sutcliffe [15];
- Design patterns in communication software by Linda Rising [18];
- Framework patterns by Wolfgan Pree [19];
- etc.

Alternatively to the generic patterns, a set of language-specific pattern languages (UML,
Smalltalk, XML, Python, etc.), links to which can be found in the pattern digest library [20],
has been discovered and documented.

Furthermore, some work has been done on formalizing the organization, process, analysis,
and business-related patterns. Among them:

- Analysis patterns by Martin Fowler [21];
- Enterprise Architecture Patterns by Michael A. Beedle [22];
- Framework Process Patterns by James Carey [23];
- Patterns for e-business [16], which focus on Business patterns, Integration patterns,

and Application patterns;
- Business patterns at work [15], which use UML to model a business system;
- Process patterns [24].

In a line with an initiative (cf. www.workflowpatterns.com) to capture the functionality of PAIS
in term of patterns, workflow [1], data [2], and resource patterns [3] have been discovered. No
work on discovering patterns combining several perspectives have been done yet. Our
initiative to discover patterns combining data flow and control flow, resulted in 34 patterns
listed in this report. We selected Colored Petri Nets as an implementation language. As far as
we know, no effort to formalize patterns in Colored Petri Nets, except the ones fragmentally
listed by Kurt Jensen in [5], [6], [7], and [9], Wil van der Aalst in [8], and Kees van Hee in [11]
have been made.

 106

http://www.workflowpatterns.com/

FUTURE WORK

We do not claim the completeness of the implementation patterns in CPN, listed in this
document, since they are the result of an explorative work and are not derived in a systematic
manner. One of the intents of the CPN patterns is to make them available to the CPN
community in a form of a pattern library in order to share sound solutions, proven by
experience, between developers. We want to encourage members of the CPN community to
extend the catalog of patterns by the ones not covered here. Moreover, these patterns can
serve as a language enhancing communication between developers, allowing communicate
problems and solutions unambiguously. Note that although CPN patterns are language-
specific, they can be applied for modeling and design of any kind of dynamic systems with
elements of concurrency.

On the other hand, since the CPN patterns are language-specific, they cannot be applied in
the scope of PAIS, based on languages different from CPN. Therefore, this work is
considered as a background work for discovering tool-independent patterns combining
different perspectives.

 107

ACKNOWLEDGEMENTS

We would like to thank Kurt Jensen for contributing to the work reported in this paper. This
paper is a spin-off of the PhD course on Colored Petri Nets he gave in Eindhoven. His
experience in modeling using Colored Petri Nets has been vital for collecting and describing
the patterns presented.

 108

REFERENCES

[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.
[2] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst.

Workflow Data Patterns. QUT Technical report, FIT-TR-2004-01, Queensland University of
Technology, Brisbane, 2004.

[3] N. Russell, A.H.M. ter Hofstede, D. Edmond, W.M.P. van der Aalst. Workflow Resource
Patterns, 2004, BETA Working Paper Series, WP 127, Eindhoven University of
Technology, Eindhoven

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements od Reusable Object-Oriented Software. Addison-Wesley Professional
Computing Series. Addison-Wesley Publishing Company, New York, 1995.

[5] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1, Basic Concepts. Monographs in Theoretical Computer Science, Springer-
Verlag, 2nd corrected printing 1997.

[6] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 2, Analysis Methods. Monographs in Theoretical Computer Science, Springer-
Verlag, 2nd corrected printing 1997.

[7] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 3, Practical Use. Monographs in Theoretical Computer Science, Springer-Verlag,
1997.

[8] W.M.P. van der Aalst. Lecture notes on Process-modeling. Eindhoven University of
Technology, 2003.

[9] Official site of CPN Tools http://wiki.daimi.au.dk/cpntools-help/cpntools-help.wiki
[10] Proceedings of Fifth Workshop and Tutorial on Practical Use of Colored Petri Nets and

the CPN Tools. October 8-11, 2004
[11] K.M. van Hee. Information Systems Engineering:A Formal Approach. Cambridge

University Press,1994
[12] W. Zimmer. "Relationships between Design Patterns” in Pattern Languages of Program

Design, J. O. Coplien and D. C. Schmidt (eds.), Reading, MA: Addison-Wesley, 1995.
[13] S. Hasso and C. R. Carlson. Linguistics-based Software Design Patterns Classification.

In Hawaii International Conference on Computer Sciences, Honolulu, HI, Jan 2004.
[14] C. Alexander. A Pattern Language: Towns, Building and Construction. Oxford University

Press, 1977.
[15] A. Sutcliffe. Patterns for Knowledge and Software Reuse. Lawrence Erlbaum Associates,

Inc. March 2002.
[16] J.Adams, S.Koushik, G.Vasudeva, G.Galambos. Patterns for e-Business. A Strategy for

Use. IBM Press, 2001
[17] H. Eriksson, M. Penker. Business Modeling with UML. Business patterns at work. Wiley,

John & Sons, Incorporated, 1998.
[18] L. Rising. Design Patterns in Communication Software. Cambridge University Press,

2000.
[19] W. Pree. Framework patterns. SIGS Bks, 1996.
[20] Pattern digest library http://patterndigest.com/books/otherlang.jsp
[21] M. Fowler. Analysis Patterns. Addison Wesley Longman, 1995.
[22] M.A. Beedle. Enterprise Architecture Patterns. Cambridge University Press, 1998.
[23] J. Carey, B. Carlson. Framework Process Patterns. Addison Wesley Longman, Inc.,

2001.
[24] S.W. Ambler. Process Patterns, Cambridge University Press,1998.

 109

http://is.tm.tue.nl/staff/wvdaalst/publications/p186.pdf
http://is.tm.tue.nl/staff/wvdaalst/publications/p220.pdf
http://wiki.daimi.au.dk/cpntools-help/cpntools-help.wiki
http://patterndigest.com/books/otherlang.jsp

	INTRODUCTION
	CENTRAL CONCEPTS AND SCOPE
	PATTERN FORMAT
	PATTERN 1: ID MATCHING
	PATTERN 2: ID MANAGER
	PATTERN 3: AGGREGATE OBJECTS
	PATTERN 4: QUEUE
	PATTERN 5: FIFO QUEUE
	PATTERN 6: LIFO QUEUE
	PATTERN 7: RANDOM QUEUE
	PATTERN 8: PRIORITY QUEUE
	PATTERN 9: CAPACITY-BOUNDING
	PATTERN 10: INHIBITOR ARC
	PATTERN 11: COLORED INHIBITOR ARC
	PATTERN 12: SHARED DATABASE
	PATTERN 13: DATABASE MANAGEMENT
	PATTERN 14: COPY MANAGER
	PATTERN 15: LOCK MANAGER
	PATTERN 16: BI-LOCK MANAGER
	PATTERN 17: LOG MANAGER
	PATTERN 18: BLOCKING STATE-INDEPENDENT FILTER
	PATTERN 19: BLOCKING STATE-DEPENDENT FILTER
	PATTERN 20: NON-BLOCKING STATE-INDEPENDENT FILTER
	PATTERN 21: NON-BLOCKING STATE-DEPENDENT FILTER
	PATTERN 22: TRANSLATOR
	PATTERN 23: ASYNCHRONOUS TRANSFER
	PATTERN 24: SYNCHRONOUS TRANSFER
	PATTERN 25: RENDEZVOUS
	PATTERN 26: ASYNCHRONOUS ROUTER
	PATTERN 27: ASYNCHRONOUS AGGREGATOR
	PATTERN 28: BROADCASTING
	PATTERN 29: REDUNDANCY MANAGER
	PATTERN 30: DATA DISTRIBUTOR
	PATTERN 31: DATA MERGE
	PATTERN 32: DETERMINISTIC XOR-SPLIT
	PATTERN 33: NON-DETERMINISTIC XOR-SPLIT
	PATTERN 34: OR
	CPN PATTERN RELATIONSHIPS
	CLASSIFICATION OF CPN PATTERNS
	RELATED WORK
	FUTURE WORK
	ACKNOWLEDGEMENTS

