
CIS 525 Software Development of Parallel and Distributed systems

RAPID PROTOTYPING

- Rapid Prototyping tool
- Behavioral validation
- Environmental integration

1. What it does?

• To express specification
• To satisfy corresponding properties
• To generate programs adapted to target architectures

2. Issues of automatization of Rapid Prototyping:

• How to get parallel activities from specification?
• How to allow interfaces between the created prototype and its

environment?
• How to optimize generated code?

3. Formal approach allows major advances in:

• Reliability
• Robustness
• Modification
• Reusability

4. Verification of systems before installation:

• Large cost reduction in development and maintenance
• Petri nets allow validation of behavioral properties (locks, etc.)

 2

• Petri nets allow abstractions of subsets of the outside
environment the prototype has to deal with

Main ideas:

- management of external environment interfaces
- description of the complete process

Specification:

- modeling of the system behavior
- modeling of the prototype environment behavior (needed to

validate the system behavior in its environment) – calls of
interface primitives are required

EXAMPLE: Data processing of characters between 3 processes

- Petri net model has to be compilable (i.e. it is well structured

and respects some properties)
- Compilable model may be decomposed into sets of objects
- The decomposition is performed before code generation

Types of software objects involved

1. Process – subsets satisfying invariant properties and
characterize a possible concurrent program unit

2. state_process – is a place belonging to a process (simple,
alternative, terminate)

3. Resource – private, shared

4. Action (from transitions) can be:

 3

- simple (one process)
- synchronized (>=2)
- guarded (resources)

Definition: A prototyping process is a mapping from a Petri net to
a prototype.

Steps of Prototyping Process

1. Identification: (neither language nor architecture dependent)

• Identifies and checks the use of external components
• Behavioral validation of external component must happen

before validation

2. Analysis: (neither language nor architecture dependent)

• Decomposing the model into sets of objects (using Petri net

invariants called also semi-flows)
• Several decompositions are possible and all of them can be

explored

3. Location Step: (architecture dependent)

• Distributes instances of the process decomposition upon the

target architecture (if several processors) – external component
location constraints have to be taken into account

4. Code Generation: (target language dependent)

• Prototype manages control of all actions described under

specification

 4

• External component must be program in the target language; the
code must be linked to prototype

• Code is generated using object decomposition from analysis
• Prototype code is optimized using:

- attributes associated to each object (simple, alternative,

terminate)
- relation between objects.

Prototyping Tool

1. Identification Step: interaction of external component with a

system
2. Analysis Step:

- phase 1: semi-flow computation
- phase 2: compute all possible process decompositions using

semiflows

3. Processes:

Process#1: ProdReady +ProdWait + ProdInit + ProdEnd

Process#2: Cust1_1 + Cust1_2 + Cust1_End

Process#3: Cust2_1 + Cust2_2 + Cust2_End

(tool may ask human for a choice of decomposition; processes
have to be named by system designer)

- phase 3: all objects and attribute objects are deduced from
the model and its process decomposition

 5

4. Location and Generation:

- Each process is implemented by a task type (Prod, Cust1,
Cust2 – are deduced from specification)

- Other tasks manage synchronized Actions also Resources
(Resource Manager) and control (Application Manager) –
management tasks

