CIS 525 Software Development of Parallel and Distributed systems
RAPID PROTOTYPING

· Rapid Prototyping tool

· Behavioral validation

· Environmental integration

1. What it does?

· To express specification

· To satisfy corresponding properties

· To generate programs adapted to target architectures

2. Issues of automatization of Rapid Prototyping:

· How to get parallel activities from specification?

· How to allow interfaces between the created prototype and its environment?

· How to optimize generated code?

3. Formal approach allows major advances in:

· Reliability

· Robustness

· Modification

· Reusability

4. Verification of systems before installation:

· Large cost reduction in development and maintenance

· Petri nets allow validation of behavioral properties (locks, etc.)

· Petri nets allow abstractions of subsets of the outside environment the prototype has to deal with

Main ideas:

· management of external environment interfaces

· description of the complete process

Specification:

· modeling of the system behavior

· modeling of the prototype environment behavior (needed to validate the system behavior in its environment) – calls of interface primitives are required

EXAMPLE: Data processing of characters between 3 processes

· Petri net model has to be compilable (i.e. it is well structured and respects some properties)

· Compilable model may be decomposed into sets of objects

· The decomposition is performed before code generation

Types of software objects involved

1. Process – subsets satisfying invariant properties and characterize a possible concurrent program unit

2. state_process – is a place belonging to a process (simple, alternative, terminate)

3. Resource – private, shared

4. Action (from transitions) can be:

· simple (one process)

· synchronized (>=2)

· guarded (resources)

Definition: A prototyping process is a mapping from a Petri net to a prototype.

Steps of Prototyping Process

1. Identification: (neither language nor architecture dependent)

· Identifies and checks the use of external components

· Behavioral validation of external component must happen before validation

2. Analysis: (neither language nor architecture dependent)

· Decomposing the model into sets of objects (using Petri net invariants called also semi-flows)

· Several decompositions are possible and all of them can be explored

3. Location Step: (architecture dependent)

· Distributes instances of the process decomposition upon the target architecture (if several processors) – external component location constraints have to be taken into account

4. Code Generation: (target language dependent)

· Prototype manages control of all actions described under specification

· External component must be program in the target language; the code must be linked to prototype

· Code is generated using object decomposition from analysis

· Prototype code is optimized using:

· attributes associated to each object (simple, alternative, terminate)

· relation between objects.

Prototyping Tool

1. Identification Step: interaction of external component with a system

2. Analysis Step:
· phase 1: semi-flow computation

· phase 2: compute all possible process decompositions using semiflows
3. Processes:

Process#1: ProdReady +ProdWait + ProdInit + ProdEnd

Process#2: Cust1_1 + Cust1_2 + Cust1_End

Process#3: Cust2_1 + Cust2_2 + Cust2_End

(tool may ask human for a choice of decomposition; processes have to be named by system designer)

· phase 3: all objects and attribute objects are deduced from the model and its process decomposition
4. Location and Generation:

· Each process is implemented by a task type (Prod, Cust1, Cust2 – are deduced from specification)

· Other tasks manage synchronized Actions also Resources (Resource Manager) and control (Application Manager) – management tasks

PAGE
5

