
CIS 525 Software Development of Parallel and Distributed Systems

Verification of System Properties
Using Place Invariants

Problem description:

Suppose that n processes in an operating system
are each allowed to access a buffer in reading or
writing mode. To guarantee reliability, reading and
writing access is restricted in the following way:
when no process is writing to the buffer then up to
k<=n processes are allowed to read it. But writing
access to the buffer is only permitted as long as no
other process is reading or writing the buffer.

Desired system properties:

Property #1: The number of processes, n, remains
constant and each process is in one of the states only.

Property #2: There is at most one process that is in
writing mode.

Property #3: When no process is writing then up to
k processes can be in the reading mode.

 2

 System of reader and writer processes is shown
as P/T net. Each process is in one of five states,
represented by separate places s0, s1, s2, s3, s4. In the
initial state, all n processes are passive. Hence, state
s0 contains n tokes, each representing one process.
This represents an initial state of the system. The
processes are not distinguished among themselves.
The place s5 contains k tokens in the initial marking,
where k<=n. This corresponds to the number of
processes that are allowed to read the buffer
concurrently.

 Two invariants can be defined for the system: the
first contains places s0, s1, s2, s3, s4. The second
invariant contains places: s2, s4, s5.

 From the first invariant, for each marking M that
can be reached from initial marking M0 we can prove
the following property:

M(s0)+M(s1)+M(s2)+M(s3)+M(s4) = M0(s0)=n

This means that the number of processes, n, remains
constant and each process is in precisely one of the
states represented by places s0, s1, s2, s3, s4.

 3

 From the second invariant, for each marking M
that can be reached from initial marking M0 we can
prove the following property:

M(s2)+k*M(s4)+M(s5) = M0(s2)+k*M0(s4)+M0(s5) =k

 We find that s4 contains at most one token under
any marking M, i.e. there exists only one writing
process. When s4 carries a token then s2 and s5 are
empty. So, while some process is writing, no other
process reads the buffer.

 Place s2 carries at most k tokens, i.e. there are at
most k processes reading concurrently. When no
process is writing, i.e. M(s4)=0, then s2 may in fact
obtain k tokens. Then, the synchronization place s5 is
empty.

 4

Proving liveness of the P/T net that models
the CREW operating system

Proposition. P/T net modeling the Readers and
Writers problem is live, i.e. that each reachable
marking enables at least one transition.

Proof. Places s0, s1, s3 have capacity n, i.e. there is at
most n tokens in these places at any point in time
assuming initial marking as described above. Place s4
has capacity 1 and places s2 and s5 have capacity k
with the same assumption.
 One can notice that capacity of places will never
hinder any firing of transitions.
 In case of M(s0)+M(s2)+M(s4)>0, from the net
structure we see that at least one of the transitions t0,
t3, t2, or t5 is enabled.

 If M(s0)+M(s2)+M(s4)=0 we get from invariant i1
that M(s1)+M(s3)=n and from invariant i2 that
M(s5)=k. Then t1 or t4 is enabled.

Now, if s0 is empty for some marking M that can
be reached from [M0>, it may be marked by some
succession of firings. This implies the liveness of t0
and t3. The liveness of other transitions follows
immediately.

