CIS 525 Software Development of Parallel and Distributed Systems

Verification of System Properties
Using Place Invariants

Problem description:

Suppose that n processes in an operating system
are each allowed to access a buffer in reading or
writing mode. To guarantee reliability, reading and
writing access 1s restricted in the following way:
when no process is writing to the buffer then up to
k<=n processes are allowed to read it. But writing
access to the buffer is only permitted as long as no
other process 1s reading or writing the buffer.

Desired system properties:

Property #1: The number of processes, n, remains
constant and each process is in one of the states only.

Property #2: There 1s at most one process that is in
writing mode.

Property #3: When no process 1s writing then up to
k processes can be in the reading mode.



System of reader and writer processes 1s shown
as P/T net. Each process 1s in one of five states,
represented by separate places sg, S;, S, S3, S4. In the
initial state, all n processes are passive. Hence, state
so contains n tokes, each representing one process.
This represents an initial state of the system. The
processes are not distinguished among themselves.
The place s5 contains k tokens in the initial marking,
where k<=n. This corresponds to the number of
processes that are allowed to read the buffer
concurrently.

Two invariants can be defined for the system: the
first contains places s, s, Sy, S3, S4. The second
invariant contains places: s,, S4, Ss.

From the first invariant, for each marking M that
can be reached from initial marking M, we can prove
the following property:

M(80)+M(s1)+M(82)+M(s3)+M(s4) = Mo(Sp)=n

This means that the number of processes, n, remains
constant and each process is in precisely one of the
states represented by places sy, s, 2, S3, S4.



3

From the second invariant, for each marking M
that can be reached from initial marking M, we can
prove the following property:

M(82)+k*M(84)TM(s5) = Mo(82)Tk*My(s4)TMy(ss) =k

We find that s, contains at most one token under
any marking M, 1.e. there exists only one writing
process. When s, carries a token then s, and ss are
empty. So, while some process is writing, no other
process reads the buffer.

Place s, carries at most k tokens, i.e. there are at
most k processes reading concurrently. When no
process 1s writing, 1.e. M(s4)=0, then s, may in fact
obtain k tokens. Then, the synchronization place ss is
empty.



4

Proving liveness of the P/T net that models
the CREW operating system

Proposition. P/T net modeling the Readers and
Writers problem is live, i.e. that each reachable
marking enables at least one transition.

Proof. Places s, s;, s3 have capacity n, 1.e. there 1s at
most n tokens in these places at any point in time
assuming initial marking as described above. Place s4
has capacity 1 and places s, and ss have capacity k
with the same assumption.

One can notice that capacity of places will never
hinder any firing of transitions.

In case of M(sg)+M(s;)+M(s4)>0, from the net
structure we see that at least one of the transitions t,,
t3, t, OT t5 1S enabled.

If M(s9)+M(s2)+M(s4)=0 we get from invariant 1,
that M(s;)+*M(s3)=n and from invariant 1, that
M(ss)=k. Then t; or t4 is enabled.

Now, if sy 1s empty for some marking M that can
be reached from [My>, it may be marked by some
succession of firings. This implies the liveness of t
and t;. The liveness of other transitions follows
immediately.



