
An Introduction to

Design Patterns

John Vlissides

IBM T.J. Watson Research

vlis@watson.ibm.com

Text c
 1994-1999 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

Diagrams c
 1995 by Addison-Wesley Publishing Company. All rights reserved. Diagrams taken
from Design Patterns: Elements of Reusable Object-Oriented Software may not be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher.

1

Overview

Part I: Motivation and Concept

� the issue

� what design patterns are

� what they're good for

� how we develop and categorize them

2

Overview (cont'd)

Part II: Application

� use patterns to design a document editor

� demonstrate usage and bene�ts

Part III: Wrap-Up

� observations, caveats, and conclusion

3

Part I: Motivation and Concept

OOD methods emphasize design notations

Fine for speci�cation, documentation

But OOD is more than just drawing diagrams

Good draftsmen 6= good designers

Good OO designers rely on lots of experience

At least as important as syntax

Most powerful reuse is design reuse

Match problem to design experience

4

OO systems exploit recurring design structures that promote

� abstraction

�
exibility

� modularity

� elegance

Therein lies valuable design knowledge

Problem: capturing, communicating, and applying this knowledge

5

A Design Pattern

� abstracts a recurring design structure

� comprises class and/or object

{ dependencies

{ structures

{ interactions

{ conventions

� names & speci�es the design structure explicitly

� distills design experience

6

A Design Pattern has 4 basic parts:

1. Name

2. Problem

3. Solution

4. Consequences and trade-o�s of application

Language- and implementation-independent

A \micro-architecture"

Adjunct to existing methodologies (UML/P, Fusion, etc.)

7

Example: Observer

observers

a = 50%
b = 30%
c = 20%

subject

change notification

requests, modifications

window

a

b

c

window

a b c
x
y
z

30 10
50 30 20
60

80 10 10

window

a b c

8

Goals

Codify good design

Distill and disseminate experience

Aid to novices and experts alike

Abstract how to think about design

Give design structures explicit names

Common vocabulary

Reduced complexity

Greater expressiveness

Capture and preserve design information

Articulate design decisions succinctly

Improve documentation

Facilitate restructuring/refactoring

Patterns are interrelated

Additional
exibility

9

Design Pattern Space

C
la

ss
O

bj
ec

t

Creational Structural Behavioral

Factory Method Adapter (class)

Adapter (object)
Bridge
Composite
Decorator
Flyweight
Facade
Proxy

Chain of Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Interpreter
Template Method

Purpose

S
co

pe

Abstract Factory
Builder
Prototype
Singleton

Scope: domain over which a pattern applies

Purpose: re
ects what a pattern does

10

Design Pattern Template (�rst half)

Name scope purpose

Intent

short description of pattern and its purpose

Also Known As

other names that people have for the pattern

Motivation

motivating scenario demonstrating pattern's use

Applicability

circumstances in which pattern applies

Structure

graphical representation of the pattern using modi�ed OMT notation

Participants

participating classes and/or objects and their responsibilities

...

11

Design Pattern Template (second half)

...

Collaborations

how participants cooperate to carry out their responsibilities

Consequences

the results of application, bene�ts, liabilities

Implementation

implementation pitfalls, hints, or techniques, plus any language-dependent
issues

Sample Code

sample implementations in C++ or Smalltalk

Known Uses

examples drawn from existing systems

Related Patterns

discussion of other patterns that relate to this one

12

Modi�ed OMT Notation

one

many
AbstractClass

ConcreteSubclass2ConcreteSubclass1

object reference

aggregation

creates

instanceVariable

ConcreteClass

implementation
pseudo−code

abstractOperation()

operation()

13

Observer object behavioral

Intent

de�ne a one-to-many dependency between objects so that when one object
changes state, all its dependents are noti�ed and updated automatically

Applicability

� when an abstraction has two aspects, one dependent on the other

� when a change to one object requires changing others, and you don't know
how many objects need to be changed

� when an object should notify other objects without making assumptions
about who these objects are

Structure

subject

observersSubject

ConcreteSubject

ConcreteObserver

Observer

subjectState

observerState
return subjectState

attach(Observer)
detach(Observer)
notify()

update()

update() observerState =
 subject.getState()

getState()

for all o in observers {
 o.update()
}

14

Observer (cont'd) object behavioral

Consequences

+ modularity: subject and observers may vary independently

+ extensibility: can de�ne and add any number of observers

+ customizability: di�erent observers provide di�erent views of subject

� unexpected updates: observers don't know about each other

� update overhead: might need hints

Implementation

� subject-observer mapping

� dangling references

� avoiding observer-speci�c update protocols: the push and pull models

� registering modi�cations of interest explicitly

Known Uses

Smalltalk Model-View-Controller (MVC)

InterViews (Subjects and Views)

Andrew (Data Objects and Views)

15

Bene�ts

� design reuse

� uniform design vocabulary

� enhance understanding, restructuring

� basis for automation

16

Part II: Application

7 Design Problems:

� document structure

� formatting

� embellishment

� multiple look & feels

� multiple window systems

� user operations

� spelling checking &
hyphenation

17

Document Structure

Goals:

� present document's visual aspects

� drawing, hit detection, alignment

� support physical structure (e.g., lines, columns)

Constraints:

� treat text and graphics uniformly

� no distinction between one and many

18

Document Structure (cont'd)

Solution: Recursive composition

space image

G g

characters

composite (column)

composite (row)

19

Document Structure (cont'd)

Object structure

composite

spaceG

composite

g

composite
(column)

(row) (row)

20

Document Structure (cont'd)

Glyph: base class for composable graphical objects

Basic interface:

Task Operations

appearance void draw(Window)

hit detection boolean intersects(Coord, Coord)

structure void insert(Glyph)

void remove(Glyph)

Glyph child(int)

Glyph parent()

Subclasses: Character, Image, Space, Row, Column

21

Document Structure (cont'd)

Glyph Hierarchy

Row
children

PolygonRectangleCharacter

char c Coord l, b
Coord r, t

Column
children

Glyph

...

draw(Window)
intersects(Coord, Coord)
insert(Glyph, int)

draw(...) draw(...) draw(...) draw(...) draw(...)
intersects(...)
insert(...)

intersects(...) intersects(...) intersects(...) intersects(...)
insert(...)

Coord x[]
Coord y[]

22

Document Structure (cont'd)

Composite object structural

Intent

treat individual objects and multiple, recursively-composed objects uniformly

Applicability

objects must be composed recursively,

and there should be no distinction between individual and composed elements,

and objects in the structure can be treated uniformly

Structure

children
CompositeLeaf

Component

operation()
add(Component)
remove(Component)
getChild(int)

operation() operation()
add(Component)
remove(Component)
getChild(int)

forall g in children
 g.operation();

23

Document Structure (cont'd)

Composite (cont'd) object structural

Consequences

+ uniformity: treat components the same regardless of complexity

+ extensibility: new Component subclasses work wherever old ones do

� overhead: might need prohibitive numbers of objects

Implementation

� do Components know their parents?

� uniform interface for both leaves and composites?

� don't allocate storage for children in Component base class

� responsibility for deleting children

Known Uses

ET++ VObjects

InterViews Glyphs, Styles

Unidraw Components, MacroCommands

24

Questions

What does the pattern let you vary?

Where have you applied this pattern in your designs?

What are the

� objects

� interfaces

� classes

� interactions

etc.?

25

Formatting

Goals:

� automatic linebreaking, justi�cation

Constraints:

� support multiple linebreaking algorithms

� don't mix up with document structure

26

Formatting (cont'd)

Solution: Encapsulate linebreaking strategy

Compositor

� base class abstracts linebreaking algorithm

� subclasses for specialized algorithms, e.g., SimpleCompositor,
TeXCompositor

Composition

� composite glyph

� supplied a compositor and leaf glyphs

� creates row-column structure as directed by compositor

27

Formatting (cont'd)

New object structure

spaceG g

composition

compositor

row row

column

glyphs
generated

composition−

28

Formatting (cont'd)

Strategy object behavioral

Intent

de�ne a family of algorithms, encapsulate each one, and make them
interchangeable to let clients and algorithms vary independently

Applicability

when an object should be con�gurable with one of several algorithms,

and all algorithms can be encapsulated,

and one interface covers all encapsulations

Structure

Strategy

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

Context (Compositor)(Composition)

contextInterface() algorithmInterface()

algorithmInterface() algorithmInterface() algorithmInterface()

29

Formatting (cont'd)

Strategy (cont'd) object behavioral

Consequences

+ greater
exibility, reuse

+ can change algorithms dynamically

� strategy creation & communication overhead

� in
exible Strategy interface

Implementation

� exchanging information between a Strategy and its context

� static strategy selection via templates

Known Uses

InterViews text formatting

RTL register allocation & scheduling strategies

ET++SwapsManager calculation engines

30

Embellishment

Goals:

� add a frame around text composition

� add scrolling capability

Constraints:

� embellishments should be reusable without subclassing

� should go unnoticed by clients

31

Embellishment (cont'd)

Solution: \Transparent" enclosure

MonoGlyph

� base class for glyphs having one child

� operations on MonoGlyph pass through to child

MonoGlyph subclasses:

� Frame: adds a border of speci�ed width

� Scroller: scrolls/clips child, adds scrollbars

32

Embellishment (cont'd)

Glyph

Frame

component
Character RowMonoGlyph

Scroller

draw(Window) draw(Window) draw(Window)

draw(Window) draw(Window)

draw(Window)

void MonoGlyph.draw (Window w) {
component.draw(w);

}

void Frame.draw (Window w) {
super.draw(w);
drawFrame(w);

}

33

Embellishment (cont'd)

New object structure

spaceG g

composition

row row

column

frame

scroller

34

Embellishment (cont'd)

Decorator object structural

Intent

augment objects with new responsibilities

Applicability

� when extension by subclassing is impractical

� for responsibilities that can be withdrawn

Structure

component
ConcreteComponent Decorator

ConcreteDecoratorA

component−>Operation()

ConcreteDecoratorB

addedState

(MonoGlyph)

Component (Glyph)

operation()

operation() operation()

operation() operation()

component.operation()

addedBehavior()

super.operation()
addedBehavior()

35

Embellishment (cont'd)

Decorator (cont'd) object structural

Consequences

+ responsibilities can be added/removed at run-time

+ avoids subclass explosion

+ recursive nesting allows multiple responsibilities

� interface occlusion

� identity crisis

Implementation

� interface conformance

� use a lightweight, abstract base class for Decorator

� heavyweight base classes make Strategy more attractive

Known Uses

embellishment objects from most OO-GUI toolkits

ParcPlace PassivityWrapper

InterViews DebuggingGlyph

36

Multiple Look & Feels

Goals:

� support multiple look and feel standards

� generic, Motif, PM, Macintosh, Windows, ...

� extensible for future standards

Constraints:

� don't recode existing widgets or clients

� switch look and feel without recompiling

37

Multiple Look & Feels (cont'd)

Solution:
Abstract the process of creating objects

Instead of

Scrollbar sb = new MotifScrollbar();

use

Scrollbar sb = factory.createScrollbar();

where factory is an instance of MotifFactory

38

Multiple Look & Feels (cont'd)

Factory interface

� de�nes \manufacturing interface"

� subclasses produce speci�c products

� subclass instance chosen at run-time

interface Factory {

Scrollbar createScrollbar();
Menu createMenu();
...

}

39

Multiple Look & Feels (cont'd)

Factory

MotifFactoryPMFactory

PMScrollbar MotifScrollbar

Glyph

Character

createScrollbar()
createMenu()

createScrollbar()
createMenu()

createScrollbar()
createMenu()

draw(Window) draw(Window)

Scrollbar

draw(Window)

draw(Window)

draw(Window)

Scrollbar MotifFactory.createScrollBar () {
return new MotifScrollbar();

}

Scrollbar PMFactory.createScrollBar () {
return new PMScrollbar();

}

40

Multiple Look & Feels (cont'd)

Abstract Factory object creational

Intent

create families of related objects without specifying class names

Applicability

when clients cannot anticipate groups of classes to instantiate

Structure

AbstractFactory

ConcreteFactory1 ConcreteFactory2

AbstractProductA

AbstractProductB

Client

ProductA2 ProductA1

ProductB2 ProductB1

createProductA()
createProductB()

createProductA()
createProductB()

createProductA()
createProductB()

41

Multiple Look & Feels (cont'd)

Abstract Factory (cont'd) object creational

Consequences

+
exibility: removes type dependencies from clients

+ abstraction: hides product's composition

� hard to extend factory interface to create new products

Implementation

� parameterization as a way of controlling interface size

� con�guration with Prototypes

Known Uses

InterViews Kits

ET++ WindowSystem

42

Multiple Window Systems

Goals:

� make composition appear in a window

� support multiple window systems

Constraints:

� minimize window system dependencies

43

Multiple Window Systems (cont'd)

Solution: Encapsulate implementation dependencies

Window

� user-level window abstraction

� displays a glyph (structure)

� window system-independent

� task-related subclasses (e.g., IconWindow, PopupWindow)

44

Multiple Window Systems (cont'd)

Window interface

interface Window {
...
void iconify(); // window-management
void raise();
...

void drawLine(...); // device-independent
void drawText(...); // graphics interface
...

}

45

Multiple Window Systems (cont'd)

Window uses a WindowRep

� abstract implementation interface

� encapsulates window system dependencies

� window systems-speci�c subclasses
(e.g., XWindowRep, SunWindowRep)

An Abstract Factory can produce the right WindowRep!

46

Multiple Window Systems (cont'd)

Window

XWindowRep SunWindowRep

WindowRep
rep

IconWindow PopupWindow

Character

contents Glyph

drawLine()

drawText()

deviceText()

deviceText()

deviceText()

draw(Window)

draw(Window)

void Character.draw (Window w) {
w.drawText(...);

}

void Window.drawText (...) {
rep.deviceText(...);

}

void XWindowRep.deviceText (...) {
XText(...);

}

47

Multiple Window Systems (cont'd)

New object structure

window

window

window_rep

spaceG g

composition

row row

column

frame

renders

scroller

48

Multiple Window Systems (cont'd)

Bridge object structural

Intent

separate an abstraction from its implementation

Applicability

� when interface and implementation should vary independently

� require a uniform interface to interchangeable class hierarchies

Structure

Abstraction
imp

Implementor

RefinedAbstraction

Client

ConcreteImplementorA ConcreteImplementorB

(Window) (WindowRep)

operation() operationImp()

operationImp() operationImp()

imp.operationImp()

49

Multiple Window Systems (cont'd)

Bridge (cont'd) object structural

Consequences

+ abstraction and implementation are independent

+ implementations may vary dynamically

� one-size-�ts-all Abstraction and Implementor interfaces

Implementation

� sharing Implementors

� creating the right implementor

Known Uses

ET++ Window/WindowPort

libg++ Set/fLinkedList,HashTableg

50

User Operations

Goals:

� support execution of user operations

� support unlimited-level undo

Constraints:

� scattered operation implementations

� must store undo state

� not all operations are undoable

51

User Operations (cont'd)

Solution: Encapsulate the request for a service

Command encapsulates

� an operation (execute())

� an inverse operation (unexecute())

� a operation for testing reversibility (boolean reversible())

� state for (un)doing the operation

Command may

� implement the operations itself, or

� delegate them to other object(s)

52

User Operations (cont'd)

MenuItem Command
command

CopyCommand PasteCommand ACommand

Glyph

draw(Window)

clicked() execute()

execute() execute() execute()

void MenuItem.clicked () {
command.execute();

}

void PasteCommand.execute () {
// do the paste

}

void CopyCommand.execute () {
// do the copy

}

53

User Operations (cont'd)

List of commands de�nes execution history

Undo:

past future

cmd

unexecute()

Redo:

past future

cmd

execute()

54

User Operations (cont'd)

Command object behavioral

Intent

encapsulate the request for a service

Applicability

� to parameterize objects with an action to perform

� to specify, queue, and execute requests at di�erent times

� for a history of requests

� for multilevel undo/redo

Structure

state

Command

target
ConcreteCommand

Target

Client Invoker

execute()

execute()

action()

target.action()

55

User Operations (cont'd)

Command (cont'd) object behavioral

Consequences

+ abstracts executor of a service

+ supports arbitrary-level undo-redo

+ composition yields macro-commands

� might result in lots of trivial command subclasses

Implementation

� copying a command before putting it on a history list

� handling hysteresis

� supporting transactions

Known Uses

InterViews Actions

MacApp, Unidraw Commands

56

Spelling Checking and Hyphenation

Goals:

� analyze text for spelling errors

� introduce potential hyphenation sites

Constraints:

� support multiple algorithms

� don't mix up with document structure

57

Spelling Checking and Hyphenation (cont'd)

Solution: Encapsulate traversal

Iterator

� encapsulates a traversal algorithm

� uses Glyph's child enumeration operation

1

2

iterator

4

3

"a" "_"

58

Spelling Checking and Hyphenation (cont'd)

Iterator object behavioral

Intent

access elements of an aggregate sequentially without exposing its
representation

Applicability

� require multiple traversal algorithms over an aggregate

� require a uniform traversal interface over di�erent aggregates

� when aggregate classes and traversal algorithm must vary independently

Structure

Client Iterator

ConcreteIterator

Aggregate

ConcreteAggregate

return new ConcreteIterator(this)

(Glyph)

createIterator()

createIterator()

next()
isDone()
currentItem()

first()

59

Spelling Checking and Hyphenation (cont'd)

Iterator (cont'd) object behavioral

Consequences

+
exibility: aggregate and traversal are independent

+ multiple iterators ! multiple traversal algorithms

� additional communication overhead between iterator and aggregate

Implementation

� internal versus external iterators

� violating the object structure's encapsulation

� robust iterators

Known Uses

Penpoint traversal driver/slave

InterViews ListItr

Unidraw Iterator

60

Spelling Checking and Hyphenation (cont'd)

Visitor

� de�nes action(s) at each step of traversal

� avoids wiring action(s) into Glyphs

� iterator calls glyph's accept(Visitor) at each node

� accept calls back on visitor

void Character.accept (Visitor v) { v.visit(this); }

interface Visitor {
void visit(Character);
void visit(Rectangle);
void visit(Row);
// etc. for all relevant Glyph subclasses

}

61

Spelling Checking and Hyphenation (cont'd)

SpellingCheckerVisitor

� gets character code from each character glyph

Can de�ne getCharCode operation just on Character class

� checks words accumulated from character glyphs

� combine with PreorderIterator

62

Spelling Checking and Hyphenation (cont'd)

Accumulating Words

1

2

iterator

4

3

"a"

visitor

"_"

"a_"

Spelling check on each non-alphabetic character

63

Spelling Checking and Hyphenation (cont'd)

Interaction Diagram

checks
completed
word

aSpellingCheckeraCharacter ("a") anotherCharacter ("_")

accept(aSpellingChecker)

accept(aSpellingChecker)

visit(this)

getCharCode()

visit(this)

getCharCode()

64

Spelling Checking and Hyphenation (cont'd)

HyphenationVisitor

� gets character code from each character glyph

� examines words accumulated from character glyphs

� at potential hyphenation point, inserts a...

65

Spelling Checking and Hyphenation (cont'd)

Discretionary glyph

� looks like a hyphen when it falls at the end of a line

� has no appearance otherwise

� Compositor considers its presence when determining linebreaks

"a" "l" "l" "o" "y"discretionary

aluminum alloy

loy

aluminum al−or

66

Spelling Checking and Hyphenation (cont'd)

Visitor object behavioral

Intent

centralize operations on an object structure so that they can vary
independently but still behave polymorphically

Applicability

� when classes de�ne many unrelated operations

� class relationships of objects in the structure rarely change, but the
operations on them change often

� algorithms over the structure maintain state that's updated during traversal

Structure

ConcreteVisitor

ObjectStructure

ConcreteElement1 ConcreteElement2

Client

Visitor

Element

visitConcreteElement1(ConcreteElement1)
visitConcreteElement2(ConcreteElement2)

visitConcreteElement1(ConcreteElement1)
visitConcreteElement2(ConcreteElement2)

accept(Visitor)

accept(Visitor v) accept(Visitor v)

v.visitConcreteElement1(this) v.visitConcreteElement2(this)

67

Spelling Checking and Hyphenation (cont'd)

Visitor (cont'd) object behavioral

Consequences

+
exibility: visitor and object structure are independent

+ localized functionality

� circular dependency between Visitor and Element interfaces

� Visitor brittle to new ConcreteElement classes

Implementation

� double dispatch

� overloading visit operations

� catch-all operation

� general interface to elements of object structure

Known Uses

ProgramNodeEnumerator in Smalltalk-80 compiler

IRIS Inventor scene rendering

68

Part III: Wrap-Up

Observations

Applicable in all stages of the OO lifecycle

Design & reviews

Realization & documentation

Reuse & refactoring

Permit design at a more abstract level

Treat many class/object interactions as a unit

Often bene�cial after initial design

Targets for class refactorings

Variation-oriented design

Consider what design aspects are variable

Identify applicable pattern(s)

Vary patterns to evaluate tradeo�s

Repeat

69

But...

Resist branding everything a pattern

Articulate speci�c bene�ts

Demonstrate wide applicability

Find at least two existing examples

Don't apply them blindly

Added indirection ! increased complexity, cost

Pattern design even harder than OOD!

70

Conclusion

Design patterns promote

� design reuse

� uniform design vocabulary

� understanding, restructuring

� automation

� a new way of thinking about design

71

(Design) Pattern References

The Timeless Way of Building, Alexander; Oxford, 1979;
ISBN 0-19-502402-8

A Pattern Language, Alexander; Oxford, 1977; ISBN 0-19-501-919-9

Design Patterns, Gamma, et al.; Addison-Wesley, 1995;
ISBN 0-201-63361-2; CD version ISBN 0-201-63498-8

Pattern-Oriented Software Architecture, Buschmann, et al.; Wiley,
1996; ISBN 0-471-95869-7

Analysis Patterns, Fowler; Addison-Wesley, 1996; ISBN 0-201-89542-0

Smalltalk Best Practice Patterns, Beck; Prentice Hall, 1997;
ISBN 0-13-476904-X

The Design Patterns Smalltalk Companion, Alpert, et al.;
Addison-Wesley, 1998; ISBN 0-201-18462-1

AntiPatterns, Brown, et al.; Wiley, 1998; ISBN 0-471-19713-0

72

More Books:

Pattern Languages of Program Design (Addison-Wesley)
Vol. 1, Coplien, et al., eds.; 1995; ISBN 0-201-60734-4
Vol. 2, Vlissides, et al., eds.; 1996; ISBN 0-201-89527-7
Vol. 3, Martin, et al., eds.; 1998; ISBN 0-201-31011-2
Vol. 4, Harrison, et al., eds.; 2000; ISBN 0-201-43304-4

Concurrent Programming in Java, Lea; Addison-Wesley, 1997;
ISBN 0-201-69581-2

Applying UML and Patterns, Larman; Prentice Hall, 1997;
ISBN 0-13-748880-7

Pattern Hatching: Design Patterns Applied, Vlissides;
Addison-Wesley, 1998; ISBN 0-201-43293-5

Future Books:

The Pattern Almanac, Rising; Addison-Wesley, 2000;
ISBN 0-201-61567-3

73

Early Papers:

\Object-Oriented Patterns," P. Coad; Comm. of the ACM, 9/92

\Documenting Frameworks using Patterns," R. Johnson;
OOPSLA '92

\Design Patterns: Abstraction and Reuse of Object-Oriented
Design," Gamma, Helm, Johnson, Vlissides, ECOOP '93.

Columns:

C++ Report, Dr. Dobbs Sourcebook, JOOP, ROAD

74

Conferences:

PLoP 2000: Pattern Languages of Programs
September 2000, Monticello, Illinois, USA

EuroPLoP 2000
July 2000, Kloster Irsee, Germany

ChiliPLoP 2000
March 2000, Wickenburg, Arizona, USA

KoalaPLoP 2000
May 2000, Melbourne, Australia

See http://hillside.net/patterns/conferences for up-to-the-minute information.

75

Mailing Lists:

patterns@cs.uiuc.edu: present and re�ne patterns

patterns-discussion@cs.uiuc.edu: general discussion on patterns

gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns

siemens-patterns@cs.uiuc.edu: discussion on Pattern-Oriented

Software Architecture

ui-patterns@cs.uiuc.edu: discussion on user interface design patterns

business-patterns@cs.uiuc.edu: discussion on patterns for business
processes

ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed
systems

See http://hillside.net/patterns/Lists.html for an up-to-date list.

76

URLs:

General
http://hillside.net/patterns

http://www.research.ibm.com/designpatterns

Conferences
http://hillside.net/patterns/conferences/

Books
http://hillside.net/patterns/books/

Mailing Lists
http://hillside.net/patterns/Lists.html

Portland Patterns Repository
http://c2.com/ppr/index.html

77

