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ABSTRACT

This paper discusses verification, validation, and
accreditation of simulation models. The different approach
es to deciding model validity are presented; how mode
verification and validation relate to the model developmen
process are discussed; various validation techniques a
defined; conceptual model validity, model verification, op
erational validity, and data validity are described; ways to
document results are given; a recommended procedure
presented; and accreditation is briefly discussed.

1 INTRODUCTION

Simulation models are increasingly being used in problem
solving and in decision making. The developers and use
of these models, the decision makers using information d
rived from the results of the models, and people affected b
decisions based on such models are all rightly concerne
with whether a model and its results are “correct.” This con
cern is addressed through model verification and validatio
Model verification is often defined as “ensuring that the
computer program of the computerized model and its im
plementation are correct,” and is the definition adopted her
Model validation is usually defined to mean “substantiation
that a computerized model within its domain of applica
bility possesses a satisfactory range of accuracy consiste
with the intended application of the model” (Schlesinger e
al. 1979) and is the definition used here. A model sometime
becomes accredited through model accreditation. Model a
creditation determines if a model satisfies a specified mod
accreditation criteria according to a specified process.
related topic is model credibility. Model credibility is con-
cerned with developing in (potential) users the confidenc
they require to use a model and the information derive
from that model.

A model should be developed for a specific purpos
(or application) and its validity determined with respect to
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that purpose. If the purpose of a model is to answer
variety of questions, the validity of the model needs to b
determined with respect to each question. Numerous sets
experimental conditions are usually required to define th
domain of a model’s intended applicability. A model may
be valid for one set of experimental conditions and invalid in
another. A model is considered valid for a set of experiment
conditions if its accuracy is within its acceptable range
which is the amount of accuracy required for the model’
intended purpose. This usuallyrequires that the model’s
output variables of interest (i.e., the model variables used
answering the questions that the model is being develop
to answer) be identified and that their required amount o
accuracy be specified. The amount of accuracy require
should be specified prior to starting the development of th
model or very early in the model development process.
the variables of interest are random variables, then propert
and functions of the random variables such as means a
variances are usually what is of primary interest and are wh
is used in determining model validity. Several versions of
model are usually developed prior to obtaining a satisfacto
valid model. The determination of whether a model is valid
or not, i.e., model verification and validation, is usually a
process and is part of the total model development proce

It is often too costly and time consuming to determine
that a model isabsolutelyvalid over the complete domain
of its intended applicability. Instead, tests and evaluation
are conducted until sufficient confidence is obtained that
model can be considered valid for its intended applicatio
(Sargent 1982, 1984 and Shannon 1975). Figure 1 conta
the relationships of cost (a similar relationship holds fo
the amount of time) of performing model validation and
the value of a model to the user as a function of mode
confidence. The cost of model validation is usually quite sig
nificant, especially when extremely high model confidenc
is required.

The remainder of this paper is organized as follows
Section 2 discusses the basic approaches used in dec
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Figure 1: Model Confidence

ing model validity; Section 3 defines validation technique
Sections 4, 5, 6, and 7 contain descriptions of data validi
conceptual model validity, model verification, and opera
tional validity, respectively; Section 8 describes ways o
documenting results; Section 9 gives a recommended v
idation procedure; Section 10 contains a brief descriptio
of accreditation; and Section 11 has the summary.

2 VALIDATION PROCESS

Three basic approaches are used in deciding whethe
simulation model is valid or invalid. Each of the approache
requires the model development team to conduct verificati
and validation as part of the model development proce
which is discussed below. The most common approach
for the development team to make the decision as to whet
the model is valid. This is a subjective decision based
the results of the various tests and evaluations conduc
as part of the model development process.

Another approach, often called “independent verifica
tion and validation” (IV&V), uses a third party to decide
whether the model is valid. The third party is independe
of both the model development team and the model spo
sor/user(s). (A third party is also usually used for mod
accreditation.) There are two common ways that IV&V i
conducted. One way is to conduct IV&V concurrently with
model development. The other way is to conduct IV&V
after the model has been completely developed by the mo
development team. IV&V is often used when a large cost
associated with the problem the simulation model is bein
used for and/or to help in model credibility.

In the concurrent way of conducting IV&V, the mod-
el development team receives input regarding verificatio
and validation from the IV&V team as the model is bein
developed. Thus, the development of a model should n
progress beyond each stage of development if the mode
not satisfying the verification and validation requirements.
the IV&V is conducted after the model has been complete
developed, the evaluation performed can range from simp
evaluating the verification and validation conducted by th
model development team to a complete verification an
validation effort. Wood (1986) describes experiences ov
this range of evaluation by a third party on energy mode
One conclusion that Wood makes is that a complete IV&
51
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evaluation is extremely costly and time consuming for wha
is obtained. This author’s view is that if a third party is
to be used, it should beduring the model development
process. If a model has already been developed, this auth
believes that a third party should usually only evaluate th
verification and validation that has already been performe

The last approach for determining whether a model i
valid is to use a scoring model (see, e.g., Balci (1989), Ga
(1993), and Gass and Joel (1987)). Scores (or weights) a
determined subjectively when conducting various aspec
of the validation process and then combined to determin
category scores and an overall score for the simulatio
model. A simulation model is considered valid if its overall
and category scores are greater than some passing score
This approach is infrequently used in practice.

This author does not believe in the use of a scoring mod
for determining validity because (1) the subjectiveness o
this approach tends to be hidden and thus appears to
objective, (2) the passing scores must be decided in som
(usually subjective) way, (3) a model may receive a passin
score and yet have a defect that needs correction, and
the score(s) may cause overconfidence in a model or b
used to argue that one model is better than another.

We now discuss how model verification and validation
relate to the model development process. There are tw
common ways to view this relationship. One way use
some type of detailed model development process, and t
other uses some type of simple model development proce
Banks, Gerstein, and Searles (1988) reviewed work usin
both of these ways and concluded that the simple way mo
clearly illuminates model validation and verification. This
author recommends the use of a simple way (see, e.g
Sargent (1981) and Sargent (1982)), which is presente
next.

Consider the simplified version of the modeling proces
in Figure 2. Theproblem entityis the system (real or pro-
posed), idea, situation, policy, or phenomena to be modele
theconceptual modelis the mathematical/logical/verbal rep-
resentation (mimic) of the problem entity developed for a
particular study; and thecomputerized modelis the con-
ceptual model implemented on a computer. The conce
tual model is developed through ananalysis and model-
ing phase, the computerized model is developed through
a computer programming and implementation phase, and
inferences about the problem entity are obtained by con
ducting computer experiments on the computerized mod
in the experimentation phase.

We now relate model validation and verification to this
simplified version of the modeling process (see Figure 2
Conceptual model validityis defined as determining that the
theories and assumptions underlying the conceptual mod
are correct and that the model representation of the proble
entity is “reasonable” for the intended purpose of the mode
Computerized model verificationis defined as ensuring that
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Figure 2: Simplified Version of the Modeling
Process

the computer programming and implementation of the co
ceptual model is correct.Operational validity is defined
as determining that the model’s output behavior has su
cient accuracy for the model’s intended purpose over t
domain of the model’s intended applicability.Data validity
is defined as ensuring that the data necessary for mo
building, model evaluation and testing, and conducting th
model experiments to solve the problem are adequate a
correct.

Several versions of a model are usually developed
the modeling process prior to obtaining a satisfactory val
model. During each model iteration, model validation an
verification are performed (Sargent 1984). A variety o
(validation) techniques are used, which are described belo
No algorithm or procedure exists to select which techniqu
to use. Some attributes that affect which techniques to u
are discussed in Sargent (1984).

3 VALIDATION TECHNIQUES

This section describes various validation techniques (a
tests) used in model verification and validation. Most o
the techniques described here are found in the literature,
though some may be described slightly differently. They ca
be used either subjectively or objectively. By “objectively,
we mean using some type of statistical test or mathemati
procedure, e.g., hypothesis tests and confidence interv
A combination of techniques is generally used. These tec
niques are used for validating and verifying the submode
and overall model.

Animation: The model’s operational behavior is dis
played graphically as the model moves through time. F
example, the movements of parts through a factory duri
a simulation are shown graphically.
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Comparison to Other Models:Various results (e.g.,
outputs) of the simulation model being validated are com
pared to results of other (valid) models. For example, (1
simple cases of a simulation model may be compared t
known results of analytic models, and (2) the simulation
model may be compared to other simulation models tha
have been validated.

Degenerate Tests:The degeneracy of the model’s be-
havior is tested by appropriate selection of values of the
input and internal parameters. For example, does the av
erage number in the queue of a single server continue t
increase with respect to time when the arrival rate is large
than the service rate?

Event Validity: The “events” of occurrences of the
simulation model are compared to those of the real system
to determine if they are similar. An example of events is
deaths in a fire department simulation.

Extreme Condition Tests:The model structure and
output should be plausible for any extreme and unlikely
combination of levels of factors in the system; e.g., if in-
process inventories are zero, production output should b
zero.

Face Validity: “Face validity” is asking people knowl-
edgeable about the system whether the model and/or i
behavior are reasonable. This technique can be used
determining if the logic in the conceptual model is correct
and if a model’s input-output relationships are reasonable

Fixed Values:Fixed values (e.g., constants) are used for
various model input and internal variables and parameters
This should allow the checking of model results agains
(easily) calculated values.

Historical Data Validation: If historical data exist (or
if data are collected on a system for building or testing the
model), part of the data is used to build the model and
the remaining data are used to determine (test) whether th
model behaves as the system does. (This testing is conduct
by driving the simulation model with either samples from
distributions or traces (Balci and Sargent 1982a, 1982b
1984b).)

Historical Methods: The three historical methods of
validation arerationalism, empiricism, and positive eco-
nomics.Rationalism assumes that everyone knows whethe
the underlying assumptions of a model are true. Logic
deductions are used from these assumptions to develop t
correct (valid) model. Empiricism requires every assump-
tion and outcome to be empirically validated. Positive
economics requires only that the model be able to predic
the future and is not concerned with a model’s assumption
or structure (causal relationships or mechanism).

Internal Validity: Several replications (runs) of a
stochastic model are made to determine the amount of (in
ternal) stochastic variability in the model. A high amount
of variability (lack of consistency) may cause the model’s
results to be questionable and, if typical of the problem
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entity, may question the appropriateness of the policy
system being investigated.

Multistage Validation:Naylor and Finger (1967) pro-
posed combining the three historical methods of rationalis
empiricism, and positive economics into a multistage pr
cess of validation. This validation method consists of (
developing the model’s assumptions on theory, observatio
general knowledge, and function, (2) validating the mode
assumptions where possible by empirically testing the
and (3) comparing (testing) the input-output relationshi
of the model to the real system.

Operational Graphics:Values of various performance
measures, e.g., number in queue and percentage of ser
busy, are shown graphically as the model moves throu
time; i.e., the dynamic behaviors of performance indicato
are visually displayed as the simulation model moves throu
time.

Parameter Variability–Sensitivity Analysis: This
technique consists of changing the values of the input a
internal parameters of a model to determine the effect up
the model’s behavior and its output. The same relationsh
should occur in the model as in the real system. Tho
parameters that are sensitive, i.e., cause significant chan
in the model’s behavior or output, should be made suf
ciently accurate prior to using the model. (This may requi
iterations in model development.)

Predictive Validation: The model is used to predict
(forecast) the system behavior, and then comparisons
made between the system’s behavior and the model’s fore
to determine if they are the same. The system data may co
from an operational system or from experiments perform
on the system. e.g., field tests.

Traces: The behaviors of different types of specifi
entities in the model are traced (followed) through th
model to determine if the model’s logic is correct and
the necessary accuracy is obtained.

Turing Tests: People who are knowledgeable
about the operations of a system are asked if th
can discriminate between system and model outpu
(Schruben (1980) contains statistical tests for use with Turi
tests.)

4 DATA VALIDITY

Even though data validity is often not considered to b
part of model validation, we discuss it because it is usua
difficult, time consuming, and costly to obtain sufficien
accurate, and appropriate data, and is frequently the rea
that attempts to validate a model fail. Data are need
for three purposes: for building the conceptual model, f
validating the model, and for performing experiments wi
the validated model. In model validation we are concern
only with the first two types of data.
ng
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To build a conceptual model we must have sufficien
data on the problem entity to develop theories that c
be used to build the model, to develop the mathematic
and logical relationships in the model that will allow it
to adequately represent the problem entity for its intend
purpose, and to test the model’s underlying assumptions.
addition, behavioral data are needed on the problem en
to be used in the operational validity step of comparin
the problem entity’s behavior with the model’s behavio
(Usually, this data are system input/output data.) If behavi
data are not available, high model confidence usually cann
be obtained, because sufficient operational validity cann
be achieved.

The concern with data is that appropriate, accura
and sufficient data are available, and if any data transform
tions are made, such as disaggregation, they are corre
performed. Unfortunately, there is not much that can b
done to ensure that the data are correct. The best that
be done is to develop good procedures for collecting a
maintaining data, test the collected data using techniqu
such as internal consistency checks, and screen for outli
and determine if they are correct. If the amount of data
large, a data base should be developed and maintained

5 CONCEPTUAL MODEL VALIDATION

Conceptual model validity is determining that (1) th
theories and assumptions underlying the conceptu
model are correct, and (2) the model representation of t
problem entity and the model’s structure, logic, and mat
ematical and causal relationships are “reasonable” for t
intended purpose of the model. The theories and assum
tions underlying the model should be tested using math
matical analysis and statistical methods on problem ent
data. Examples of theories and assumptions are linear
independence, stationary, and Poisson arrivals. Examp
of applicable statistical methods are fitting distributions t
data, estimating parameter values from the data, and plott
the data to determine if they are stationary. In additio
all theories used should be reviewed to ensure they we
applied correctly; for example, if a Markov chain is used
does the system have the Markov property, and are the sta
and transition probabilities correct?

Next, each submodel and the overall model must b
evaluated to determine if they are reasonable and corr
for the intended purpose of the model. This should includ
determining if the appropriate detail and aggregate re
tionships have been used for the model’s intended purpo
and if the appropriate structure, logic, and mathematical a
causal relationships have been used. The primary validat
techniques used for these evaluations are face validation
traces. Face validation has experts on the problem en
evaluate the conceptual model to determine if it is correct a
reasonable for its purpose. This usually requires examini
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the flowchart or graphical model, or the set of model equ
tions. The use of traces is the tracking of entities throu
each submodel and the overall model to determine if t
logic is correct and if the necessary accuracy is maintain
If errors are found in the conceptual model, it must b
revised and conceptual model validation performed aga

6 MODEL VERIFICATION

Computerized model verification ensures that the compu
programming and implementation of the conceptual mod
are correct. The major factor affecting verification is wheth
a simulation language or a higher level programming la
guage such as FORTRAN, C, or C++ is used. The use
a special-purpose simulation language generally will res
in having fewer errors than if a general-purpose simulati
language is used, and using a general purpose simula
language will generally result in having fewer errors than
a general purpose higher level language is used. (The us
a simulation language also usually reduces the programm
time required and the flexibility.)

When a simulation language is used, verification is p
marily concerned with ensuring that an error free simulati
language has been used, that the simulation language
been properly implemented on the computer, that a tes
(for correctness) pseudo random number generator has b
properly implemented, and that the model has been p
grammed correctly in the simulation language. The prima
techniques used to determine that the model has been
grammed correctly are structured walk-throughs and trac

If a higher level language has been used, then t
computer program should have been designed, develop
and implemented using techniques found in software en
neering. (These include such techniques as object-orien
design, structured programming, and program modularit
In this case verification is primarily concerned with dete
mining that the simulation functions (such as the time-flo
mechanism, pseudo random number generator, and
dom variate generators)and the computer model have been
programmed and implemented correctly.

There are two basic approaches for testing simu
tion software: static testing and dynamic testing (Fairle
1976). In static testing the computer program is analyz
to determine if it is correct by using such techniques
structured walk-throughs, correctness proofs, and exam
ing the structure properties of the program. In dynam
testing the computer program is executed under differe
conditions and the values obtained (including those ge
erated during the execution) are used to determine if
computer program and its implementations are correct. T
techniques commonly used in dynamic testing are trac
investigations of input-output relations using different va
idation techniques, internal consistency checks, and rep
gramming critical components to determine if the sam
54
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results are obtained. If there are a large number of var
ables, one might aggregate some of the variables to redu
the number of tests needed or use certain types of desig
of experiments (Kleijnen 1987).

It is necessary to be aware while checking the correct
ness of the computer program and its implementation tha
errors may be caused by the data, the conceptual mod
the computer program, or the computer implementation.

For a detailed discussion on model verification, see
Whitner and Balci (1989).

7 OPERATIONAL VALIDITY

Operational validity is concerned with determining that the
model’s output behavior has the accuracy required for th
model’s intended purpose over the domain of its intende
applicability. This is where most of the validation testing
and evaluation takes place. The computerized model is use
in operational validity, and thus any deficiencies found may
be due to an inadequate conceptual model, an improper
programmed or implemented conceptual model (e.g., du
to programming errors or insufficient numerical accuracy)
or due to invalid data.

All of the validation techniques discussed in Section 3
are applicable to operational validity. Which techniques and
whether to use them objectively or subjectively must be de
cided by the model development team and other intereste
parties. The major attribute affecting operational validity
is whether the problem entity (or system) is observable
where observable means it is possible to collect data o
the operational behavior of the program entity. Table 1
gives a classification of the validation approaches for op
erational validity. “Comparison” means comparing/testing
the model and system input-out behaviors, and “explor
model behavior” means to examine the output behavio
of the model using appropriate validation techniques an
usually includes parameter variability-sensitivity analysis
Various sets of experimental conditions from the domain o
the model’s intended applicability should be used for both
comparison and exploring model behavior.

Table 1: Operational Validity Classification
OBSERVABLE NON-OBSERVABLE

SYSTEM SYSTEM

SUBJECTIVE • COMPARISON USING • EXPLORE
APPROACH GRAPHICAL DISPLAYS MODEL BEHAVIOR

• EXPLORE MODEL • COMPARISON TO
BEHAVIOR OTHER MODELS

OBJECTIVE • COMPARISON • COMPARISON
APPROACH USING TO OTHER

STATISTICAL MODELS USING
TESTS AND STATISTICAL
PROCEDURES TESTS AND

PROCEDURES

To obtain ahigh degree of confidence in a model and
its results, comparisons of the model’s and system’s inpu
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output behaviors for several different sets of experimen
conditions are usually required. There are three basic co
parison approaches used: (1) graphs of the model and sys
behavior data, (2) confidence intervals, and (3) hypothe
tests. Graphs are the most commonly used approach,
confidence intervals are next.

7.1 Graphical Comparison of Data

The behavior data of the model and the system are graph
for various sets of experimental conditions to determin
if the model’s output behavior has sufficient accuracy fo
its intended purpose. Three types of graphs are us
histograms, box (and whisker) plots, and behavior grap
using scatter plots. (See Sargent (1996a) for a thorou
discussion on the use of these for model validation.) A
example of a box plot is given in Figure 3, and example
of behavior graphs are shown in Figures 4 and 5. A varie
of graphs using different types of (1) measures such as
mean, variance, maximum, distribution, and time series
a variable, and (2) relationships between (a) two measu
of a single variable (see Figure 4) and (b) measures of tw
variables (see Figure 5) are required. It is important th
appropriate measures and relationships be used in valida
a model and that they be determined with respect to t
model’s intended purpose. SeeAnderson and Sargent (19
for an example of a set of graphs used in the validation
a simulation model.

120

100

60

40

80

System Model

Figure 3: Box Plot

These graphs can be used in model validation in differe
ways. First, the model development team can use the gra
in the model development process to make a subject
judgment on whether a model possesses sufficient accur
for its intended purpose. Second, they can be used in the f
validity technique where experts are asked to make subject
judgments on whether a model possesses sufficient accur
for its intended purpose. Third, the graphs can be used
in Turing tests. Another way they can be used is in IV&V
We note that independence of data is not required (as
required for most formal statistical approaches) in the u
of these graphs. See Sargent (1996a) for details.
r-
e
es,
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Figure 4: Reaction Time

Figure 5: Disk Access

7.2 Confidence Intervals

Confidence intervals (c.i.), simultaneous confidence inte
vals (s.c.i.), and joint confidence regions (j.c.r.) can b
obtained for the differences between the means, varianc
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and distributions of different model and system output var
ables for each set of experimental conditions. These c
s.c.i., and j.c.r. can be used as the model range of accur
for model validation.

To construct the model range of accuracy, a statistic
procedure containing a statistical technique and a meth
of data collection must be developed for each set of expe
imental conditions and for each variable of interest. Th
statistical techniques used can be divided into two group
(1) univariate statistical techniques and (2) multivariate st
tistical techniques. The univariate techniques can be us
to develop c.i., and with the use of the Bonferroni inequalit
(Law and Kelton 1991), s.c.i. The multivariate technique
can be used to develop s.c.i. and j.c.r. Both parametric a
nonparametric techniques can be used.

The method of data collection must satisfy the underly
ing assumptions of the statistical technique being used. T
standard statistical techniques and data collection metho
used in simulation output analysis (Banks, Carson, and N
son 1996, Law and Kelton 1991) can be used for developi
the model range of accuracy, e.g., the methods of replicati
and (nonoverlapping) batch means.

It is usually desirable to construct the model range o
accuracy with the lengths of the c.i. and s.c.i. and the siz
of the j.c.r. as small as possible. The shorter the lengths
the smaller the sizes, the more useful and meaningful t
model range of accuracy will usually be. The lengths an
the sizes (1) are affected by the values of confidence leve
variances of the model and system output variables, a
sample sizes, and (2) can be made smaller by decreasing
confidence levels or increasing the sample sizes. A trade
needs to be made among the sample sizes, confidence lev
and estimates of the length or sizes of the model range
accuracy, i.e., c.i., s.c.i., or j.c.r. Tradeoff curves can b
constructed to aid in the tradeoff analysis.

Details on the use of c.i., s.c.i., and j.c.r. for operationa
validity, including a general methodology, are contained i
Balci and Sargent (1984b). A brief discussion on the us
of c.i. for model validation is also contained in Law and
Kelton (1991).

7.3 Hypothesis Tests

Hypothesis tests can be used in the comparison of mea
variances, distributions, and time series of the output va
ables of a model and a system for each set of experimen
conditions to determine if the model’s output behavior ha
an acceptable range of accuracy. An acceptable range
accuracy is the amount of accuracy that is required of
model to be valid for its intended purpose.

The first step in hypothesis testing is to state the h
potheses to be tested:

H0: Model is valid for the acceptable range of accu
racy under the set of experimental conditions.
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H1: Model is invalid for the acceptable range of ac
curacy under the set of experimental conditions

Two types of errors are possible in testing hypothese
The first, or type I error, is rejecting the validity of a valid
model and the second, or type II error, is accepting th
validity of an invalid model. The probability of a type error
I, α, is calledmodel builder’s risk, and the probability of
the type II error,β, is calledmodel user’s risk(Balci and
Sargent 1981). In model validation, the model user’s ris
is extremely important and must be kept small. Thusboth
type I and type II errors must be carefully considered whe
using hypothesis testing for model validation.

The amount of agreement between a model and a syst
can be measured by a validity measure,λ, which is chosen
such that the model accuracy or the amount of agreeme
between the model and the system decreases as the v
of the validity measure increases. The acceptable range
accuracy can be used to determine an acceptable valid
range, 0≤ λ ≤ λ∗.

The probability of acceptance of a model being valid
Pa , can be examined as a function of the validity measure b
using an Operating Characteristic Curve (Johnson 199
Figure 6 contains three different operating characterist
curves to illustrate how the sample size of observation
affectPa as a function ofλ. As can be seen, an inaccurate
model has a high probability of being accepted if a sma
sample size of observations is used, and an accurate mo
has a low probability of being accepted if a large samp
size of observations is used.

Figure 6: Operating Characteristic Curves

The location and shape of the operating characteris
curves are a function of the statistical technique being use
the value ofα chosen forλ = 0, i.e.,α∗, and the sample
size of observations. Once the operating characteris
curves are constructed, the intervals for the model use
risk β(λ) and the model builders riskα can be determined
for a givenλ∗ as follows:

α∗ ≤ model builder’s riskα ≤ (1− β∗)
0 ≤ model user’s riskβ(λ) ≤ β∗.
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Thus there is a direct relationship among the builder’s ris
model user’s risk, acceptable validity range, and the samp
size of observations. A tradeoff among these must be ma
in using hypothesis tests in model validation.

Details of the methodology for using hypothesis tests
comparing the model’s and system’s output data for mod
validations are given in Balci and Sargent (1981). Exampl
of the application of this methodology in the testing o
output means for model validation are given in Balci an
Sargent (1982a, 1982b, 1983). Also, see Banks et al. (199

8 DOCUMENTATION

Documentation on model verification and validation is usu
ally critical in convincing users of the “correctness” of a
model and its results, and should be included in the sim
lation model documentation. (For a general discussion
documentation of computer-based models, see Gass (198
Both detailed and summary documentation are desired. T
detailed documentation should include specifics on the tes
evaluations made, data, results, etc. The summary do
mentation should contain a separate evaluation table for d
validity, conceptual model validity, computer model verifi-
cation, operational validity, and an overall summary. Se
Table 2 for an example of an evaluation table of conceptu
model validity. (See Sargent (1994, 1996b) for example
of two of the other evaluation tables.) The columns of th
table are self-explanatory except for the last column, whic
refers to the confidence the evaluators have in the resu
or conclusions, and this is often expressed as low, mediu
or high.

9 RECOMMENDED PROCEDURE

This author recommends that, as a minimum, the followin
steps be performed in model validation:

1. Have an agreement madeprior to developing the
model between (a) the model development tea
and (b) the model sponsors and (if possible) th
users, specifying the basic validation approach an
a minimum set of specific validation techniques to
be used in the validation process.

2. Specify the amount of accuracy required of th
model’s output variables of interest for the mod
el’s intended application prior to starting the de
velopment of the model or very early in the mode
development process.

3. Test, wherever possible, the assumptions and th
ories underlying the model.

4. In each model iteration, perform at least face va
lidity on the conceptual model.

5. In each model iteration, at least explore the model
behavior using the computerized model.
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6. In at least the last model iteration, make compar
isons, if possible, between the model and system
behavior (output) data for several sets of experi
mental conditions.

7. Develop validation documentation for inclusion in
the simulation model documentation.

8. If the model is to be used over a period of time, de
velop a schedule for periodic review of the model’s
validity.

Models occasionally are developed to be used more tha
once. A procedure for reviewing the validity of these model
over their life cycles needs to be developed, as specified b
step 8. No general procedure can be given, as each situat
is different. For example, if no data were available on the
system when a model was initially developed and validated
then revalidation of the model should take place prior to
each usage of the model if new data or system understandi
has occurred since its last validation.

10 ACCREDITATION

The DoD has moved to accrediting simulation models. The
define accreditation in DoDD 5000.59 as “the official certi-
fication that a model or simulation is acceptable for use fo
a specific application.” The evaluation for accreditation is
usually conducted by a third (independent) party, is subjec
tive, and often includes not only verification and validation
but items such as documentation and how user friendly th
simulation is. The acronym VV&A is used for Verification,
Validation, and Accreditation.

11 SUMMARY

Model verification and validation are critical in the devel-
opment of a simulation model. Unfortunately, there is no
set of specific tests that can easily be applied to determin
the “correctness” of the model. Furthermore, no algorithm
exists to determine what techniques or procedures to us
Every new simulation project presents a new and uniqu
challenge.

There is considerable literature on verification and val
idation. Articles given in the limited bibliography can
be used as a starting point for furthering your knowl-
edge on model verification and validation. For a fairly
recent bibliography, see the following UHL on the web:
<http://manta.cs.vt.edu/biblio/> .
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