
Evolving Collective Behavior of Cellular Automata
for Cryptography

Miroslaw Szaban
The University of Podlasie

Computer Science Department
Sienkiewicza 51, 08-110 Siedlce, Poland

Email: mszaban@ap.siedlce.pl

Franciszek Seredynski
The University of Podlasie

Computer Science Department
Sienkiewicza 51, 08-110 Siedlce, Poland
Polish-Japanese Inst. of Inf. Technology
Koszykowa 86, 02-008 Warsaw, Poland

Email: sered@ipipan.waw.pl

Pascal Bouvry
Luxembourg University

Faculty of Sciences, Technology and
Communication

6, rue Coudenhove Kalergi
L-1359 Luxembourg-Kirchberg

Luxembourg
Email: pascal.bouvry@uni.lu

Abstract— We consider 1D cellular automata (CA) and apply
genetic algorithm (GA) to discover subsets of rules controlling
CA cells, which collective behavior will result in a high quality of
pseudorandom number sequences (PNSs) suitable for symmetric
key cryptography. The search of subsets of rules is performed
in a set of predefined rules. We discover new subsets of CA
rules providing very high quality of PNSs, which can be used in
cryptographic modules.

I. INTRODUCTION

In the era of digital information computer resources are
not safe from attacks. Public and widespread use of digital
tools in communication quickly causes the creation of se-
cure mechanisms. Cryptography techniques are one of them.
Nowadays two main cryptography systems are used: secret
and public-key systems. An extensive overview of currently
known or emerging cryptography techniques used in both type
of systems can be found in [9].

Cellular automata (CA) were proposed for public-key cryp-
tosystems by Guan [2] and Kari [5]. In such systems two
keys are required: one key for encryption and the other for
decryption; one of them is held in private, the other rendered
public. However the main concern of this paper are cryptosys-
tems with a secret key. In such systems the encryption and the
decryption key are the same. The encryption process is based
on generation of pseudorandom bit sequences, and CA can
be effectively used for this purpose. CA for systems with a
secrete key were first studied by Wolfram [13], and later by
Habutsu et al. [4], Nandi et al. [8] and Gutowitz [3]. Recently
this subject was studied by the Tomassini - Perrenoud [11],
Tomassini - Sipper [12], and Seredynski et al. [10] who’s
considered one or two dimensional (2D) CA for encryption
schema. This paper is an extension of these recent studies and
concerns on application of one dimensional (1D) CA for the
secret key cryptography.

In this paper we present the new results concerning applica-
tion of CA for symmetric key cryptography. The next section
presents the idea of an encryption process based on Vernam
cipher. The main concepts of CA are presented in section 3.
Section 4 describes statement of problem. Section 5 presents

our GA and its main stages. New solutions are described in
section 6. Last section concludes the paper.

II. SYMMETRIC KEY CRYPTOGRAPHY AND VERNAM
CIPHER

Cryptography with use of symmetric key characterizes that
both sides apply this same key to encrypt and decrypt the
message. This key is secret and most secure because only
two person can use it and other people can known only
encrypted message which is to difficult to break it. In our
study we continue Vernam’s approach to cryptography with
secret key. Let P be a plain-text message consisting of m
bits (p1p2...pm) and (k1k2...km) is a bit stream of a key k.
Let ci be the i− th bit of a cipher-text obtained by applying
XOR (exclusive-or) enciphering operation: ci = piXORki.
The original bit pi of a message can be recovered by applying
the same operation XOR on ci using the same bit stream key
k: pi = ciXORki. The enciphering algorithm called Vernam
Cipher is known [6], [9] as perfectly safe if the key stream
is truly unpredictable and used only one time. We can apply
CA to generate high quality pseudorandom number sequences
(PNSs) and use them as the safe secret key. We will show
that by using 1D CA, the quality of PNSs for secret key
cryptography and the safety of the key can be increased.

III. CELLULAR AUTOMATA

1D CA is in the simplest case a collection of two-state
elementary cells arranged in a lattice of the length N , and
locally interacted in a discrete time t. For each cell i called a
central cell, a neighborhood of a radius r is defined, consisting
of ni = 2r + 1 cells, including the cell i. In this case a
cyclic boundary condition is applied to a finite size of CA,
what results is in a circle grid. Fig. 1a shows 1D CA in two
subsequent moments of time t.

It is assumed that a state qt+1
i of a cell i (see Fig. 1a) at

the time t + 1 depends only on states of its neighbourhood at
the time t, i.e. qt+1

i = f(qt
i , q

t
i1, q

t
i2, , q

t
in) and the transition

function f , called a rule, which defines the rule of updating
the cell i. Fig. 1b shows an example of a rule for CA with
r = 1. This binary rule can be also named the rule 90, after

(a)

(b)
Fig. 1. 1D Cellular automata: (a) Initial configuration and first time step ,
(b) an example of transition function - CA rule with neighbourhood radius
r=1.

Fig. 2. An Example of population of individuals composed of rules.

conversion into a decimal system. All rules for CA with r = 1
we will call short rules and rules for CA with r = 2 we will
call long rules. CA is called a uniform if one, the same rule
is assigned to all cells. If two or more rules are assigned to
cells, CA is called nonuniform.

IV. STATEMENT OF A PROBLEM

In [10] a set of 47 rules for 1D CA was discovered
using cellular programming [11]. These rules (short and long)
were characterized by high values of entropy and potentially
were suitable for generating high quality PNSs, suitable for
cryptography. Among these rules a subset of 8 rules was
selected in a semi-automatic way and was shown a high
cryptographic quality of this set. Next research [1] have shown
however, that some assigning of these rules to CA cells leads
to bad statistical quality of PNSs generated by CA.

The purpose of this work was to find in the set of discovered
47 rules, subset of rules which are suitable for cryptographic
purposes, for any assigning them into CA cells. This search
will be performed by GA.

V. GENETIC ALGORITHM SEARCHING USEFUL SUBSETS
OF CA RULES

GA [10] is a computational technique based on principles
of natural selection and genetics.

Each of individuals of GA is a potential solution of a
problem. In our population an individual is not a single rule,
but a set of rules indj

s = {k1
s , k2

s , ..., kj
s}, where indj

s ∈ IndS ,
s ∈ {1, ..., S}, S is a number of all possible individuals, and
j is a size of individual(number of rules in it, chosen from
the 47 discovered rules). So, the population P is composed of
individuals from the set IndS = {ind1, ..., inds, ..., indS}.
For all of individuals we assign random value of a size
j =

∑
ki

s, ki
s ∈ inds, as a number of rules in it. Example

of population composed of individuals with different lengths
is presented in the Fig. 2. Rules of an individual of GA are
assigned to cells of CA, and CA runs some number of time
steps, producing PNSs.

All PNSs, which describe work done by CA’s rules are
evaluated when GA’s finish its evolution. The entropy Eh is
used to specify the statistical quality of each PNS. We used
Shannon equation of even distribution as an entropy function.
To calculate a value of the entropy each PNS is divided into
subsequences of size h. In all experiments the h = 4 was used.
Let k be the number of values, which can take each element
of a sequence (in our case of binary values of all elements
k = 2) and kh a number of possible states of each sequence
(kh = 16). Eh can be calculated in the following way:

Eh = −
kh∑

j=1

phj log2 phj , (1)

where phj is a probability of occurrence of a sequence hj in
a PNS. The entropy achieves its maximum Eh = h when the
probabilities of the hj possible sequences of the length h are
equal to 1

kh . It is worth to mention that the entropy is only one
of possible statistical measures of PNSs. Entropy was used as
a fitness function of GA. The description of GA consists of
the following steps:
Alg. 1: Searching subsets of CA rules

coding an ind. in terms of the problem
gen=0
initial population P(gen)
REPEAT
evaluate P(gen)
soft tournament selection+elite strategy
averaging crossover
Gaussian mutation
gen=gen+1

UNTIL termination condition NOT TRUE
Problem solution=the best ind. from P(gen)

Alg. 2: Evaluation of ind. of P(gen)
FOR i=1 TO number_of_CA_tests DO
set randomly initial states of CA cells
assign rules from an ind. to CA cells
run CA predefined number of steps
evaluate the average entropy over all PNSs

END

Let’s outline GA operators. Selection is based on generally

known tournament selection. We used soft form of tournament
and extend it by elite strategy [7]. Crossover adapted to
our problem is the averaging crossover [7]. In this operation
participates two parents, with predefined probability pk to
be a parent. Selected pair of individuals indm

p and indn
q

become the parents. After crossover operation it gives a
child, new individual indj

s for next generation of population.
From selected parents with sizes m and n, we calculate size
j = m + E(R(0,1)(n − m)) of the child, where R(0, 1) is
a randomly chosen number in the bracket (0,1), and E is an
integer value of the number in bracket. Child will be created
in the following way:

indj
s = (indm

p ∩ indn
q) ∪Ai, (2)

and will be composed of those rules, which are in both parents,
and i = j−(indm

p ∩ indn
q) rules, which were randomly chosen

from set Ai, set of other rules from parents, selected in the
following way:

Ai = (indm
p \ indn

q) ∪ (indn
q \ indm

p). (3)

In mutation process in our GA, selected rule of an individual
is replaced by a rule from the whole set of rules, using
Gaussian distribution N(m,σ). Rules (x value in distribution)
are arguments, putted in order according to increasing value
of rule’s name on x axis. Expected value in this point is
m = No(ki)+ 1−No(k)div2, where No(ki) is a number of
rule ki selected to mutation and No(k) is number of rules in
all set. Mutation is a change of selected gene (selected with
predefined mutation’s probability pm), which is the rule from
the individual into the rule kj ⇔ No(ki) + 1−No(k)div2 ∈
(x − 0.5, x + 0.5], where the randomly selected x ∈ {m −
σ
√

2 ln(σ
√

2πR(0,1)),m + σ
√

2 ln(σ
√

2πR(0,1))} according
to linear distribution N(No(ki)+1−No(k)div2, σ). Finally,
we replace old rule ki by a new rule kj .

GA is executed predefined number of times, i.e. particular
number of generations gen are generated.

VI. EXPERIMENTAL RESULTS

A number of experiments have been conducted. The popu-
lation of GA consists of 50 individuals. Individuals contain a
number of rules ranging between 2 and 10. The algorithm was
running 50 generations. CA controlled GA worked by 4096
time steps and fitness function was computed from sequence of
4096 bits. The value of a fitness function of a given individual
is the average of entropy values of all PNSs generated by CA
rules of the individual.

The purpose of the first set experiments was to tune setting
parameters of GA. We found that the best results in entropy
values the algorithm generates with tournament size equal to
4 (see Fig. 3a), with probability of winner acceptation then
the range 0.7 to 0.9 (see Fig. 3b). Tournament selection was
supported by elite strategy with elite size equal to 1. The
probability of crossover was equal to 0.7. The probability of
mutation based on Gaussian distribution was equal to 0.001.

During the process of evolving subsets of rules by GA we
observed creation of bad subsets of rules. Fig. 4 shows Time

(a)

 3.7

 3.75

 3.8

 3.85

 3.9

 3.95

 4

 0 5 10 15 20 25 30 35 40 45 50

E
nt

ro
py

Population

Comparison of average entropy value for different selection sizes

size=2
size=4
size=6
size=8

(b)

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 5 10 15 20 25 30 35 40 45 50

E
nt

ro
py

Population

Comparison of average entropy values for different probabilities of winner acceptation

probability=0,3
probability=0,5
probability=0,7
probability=0,9

Fig. 3. Comparison of parameters for genetic operators: (a) tournament sizes
equal to 2, 4, 6, 8, (b) probabilities of winner acceptation equal to 0.3, 0.5,
0.7, 0.9.

Space Diagrams of several subsets discovered in initial stage
of running GA. Distribution of rules in CA resulted in some
bit streams which do not change in time (see Fig. 4). In our
algorithm Entropy test eliminates bad sets of rules during the
work, because entropy value of bad sets is lower than in others
sets.

Finally, from 47 rules GA selected 10 subsets of rules
(see Table I). All of these 10 sets are composed of
rules from the set of 5 rules: 1436194405, 1436965290,
1721325161, 1704302169, 1705400746. Each set from the
new sets of rules, is characterized by the high value of
entropy, so CA with use those sets of rules gives high quality
distribution in generated PNSs (see Table I). Values of entropy
fluctuate up to value 3.989. Ideal value of entropy is equal to
4, when the distribution in PNS is ideal. Results of discovered
sets of rules are close to maximal value, so obtained sets give
good results. In Fig. 5 Time Space Diagrams are presented
for some of new sets. There is no constant sequences like in
Fig. 4, where are presented low quality PNSs.

The next step of the study is series of cryptographic tests
called FIPS 140-2 tests. That set of tests is composed of four
tests: Monobit, Poker, Runs and Long Runs tests. These tests
evaluate a module creating number sequences and if the test
result is positive then module can be called PNSG - generator

(a) (b) (c)
Fig. 4. Time Space Diagram of CA run with use of bad sets of rules: (a)
set {105, 86, 30} , (b) set {86, 150, 1755030679, 1778009733, 869020563}
and (c) set {105, 1720884581, 2036803240, 150, 1778009733}.

(a) (b) (c)

Fig. 5. Time Space Diagrams of CA with discovered good subsets of rules:
(a) 5 rules: 1436194405, 1436965290, 1721325161, 1704302169, 1705400746
, (b) 4 rules: 1436194405, 1436965290, 1704302169, 1721325161 and (c) 3
rules: 1436965290, 1704302169, 1721325161.

of PNSs. In experiments was shown that each set of new rules
passed all test from tests set in 100%.

If we compare sets discovered earlier and the best set from
new discovered sets, we get that quality of new set of rules is
better than previously defined sets (see Table II).

Values of entropy in the new generator is the highest (aver-
age value) than in others generators, comparison is presented
in Table II. Applied cryptographic module use presented
above generators and gives different space of key bit stream.
Discovered module has the lowest key space only for our old
set of rules, but it has only 5 rules and determine simple
generator. Small number of rules in the set determines low
quantity of data to send by safe communication channel. Small
amount of rules in the new set leads to the simpler generation
of PNSs with the higher quality from that we conclude that
the new generator gives better results by lowest costs of time,
memory of application and quantity of secured data.

VII. CONCLUSIONS

We have presented a searching mechanism based on GA that
allowed to select a small set of rules, which are more effective
than the initial set. We selected 10 sets giving high quality
PNSs. CA with these rules was used as a PNSs generator.
Rules from the new selected set was proposed as a seed to
produce key stream of bits, which are applied in Vernam
Cipher. CA with rules from the new set was found as very
high quality PNS generators. The best sets were tested by

TABLE I
DISCOVERED 10 SUBSET OF RULES AND THEIRS PERFORMANCE.

NoSubset of rules Entropy test (value) FIPS 140-2 test (%)
Min. Ave. Max. Mono. Poker Runs L.runs

1 1436194405, 1721325161 3.98787 3.98923 3.99022 100 100 100 100
2 1436194405, 1704302169 3.98827 3.98940 3.99072 100 100 100 100
3 1704302169, 1721325161 3.98812 3.98936 3.99048 100 100 100 100
4 1436194405, 1721325161,

1704302169
3.98846 3.98951 3.99082 100 100 100 100

5 1436965290, 1705400746,
1704302169, 1721325161

3.98835 3.98940 3.99041 100 100 100 100

6 1436194405, 1436965290,
1704302169, 1721325161

3.98878 3.98941 3.99032 100 100 100 100

7 1436194405, 1436965290,
1704302169, 1721325161,
1705400746

3.98882 3.98947 3.99031 100 100 100 100

8 1436965290, 1705400746 3.98881 3.98947 3.99017 100 100 100 100
9 1436194405, 1436965290,

1704302169
3.98834 3.98941 3.99013 100 100 100 100

10 1436965290, 1704302169,
1721325161

3.98862 3.98928 3.99049 100 100 100 100

TABLE II
COMPARISON OF THE NEW SET OF RULES, AND EARLIER PROPOSALS.

Test Wolfram
rule: 30

Nandi
rules: 90,
150

Tomassini
and
Perrenoud
rules: 90,
105, 150,
165

Our old
rules set:
86, 90, 101,
105, 150,
153, 165,
1436194405

New set:
1436194405,
1436965290,
1704302169,
1721325161,
1705400746

Entropy min. 3.988271 3.988626 3.988546 3.332641 3.988825
Entropy ave. 3.989431 3.989424 3.989402 3.938360 3.989474
Entropy max. 3.990477 3.990330 3.990253 3.990003 3.990315
Monobit test 100 100 100 100 100
Poker test 100 100 100 100 100
Runs test 100 100 100 100 100
Long runs test 100 100 100 100 100
Key space N*2N*X 2N*2N*X 4N*2N*X 8N*2N*X 5N*2N*X

X - module settings

standard tests of randomness. One selected set improves time
of work CA, by decreasing number of CA rules. A high quality
of generated PNSs saves quite large key space, and decreased
its own protected quantities of cryptosystems data. Our future
work will be devoted to increase a set of rules to full set of
rules (r = 1 and r = 2), and also consider higher dimension
CA.

REFERENCES

[1] Bouvry P., Klein G. and Seredynski F. Weak Key Analysis and Micro-
controller Implementation of CA Stream Ciphers, LNAI 3684, Springer,
2005, pp. 910-915

[2] Guan P. Cellular Automaton Public-Key Cryptosystem, Complex Systems
1, 1987, pp. 51-56

[3] Gutowitz H. Cryptography with Dynamical Systems, in E. Goles and N.
Boccara (Eds.) Cellular Automata and Cooperative Phenomena, Kluwer
Academic Press, 1993

[4] Habutsu T. et al. A Secret Key Cryptosystem by Iterating a Chaotic Map,
Proc. of Eurocrypt’91, 1991, pp. 127-140

[5] Kari J. Cryptosystems based on reversible cellular automata, Personal
Communication, 1992

[6] Menezes A. et al. Handbook of Applied Cryptography, CRC Press, 1996

[7] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution
Programs, Springer-Verlag, New York, 1994

[8] Nandi S. et al. Theory and Applications of Cellular Automata in Cryp-
tography, IEEE Trans. on Computers, v. 43, 1994, pp. 1346-1357

[9] Schneier B. Applied Cryptography, Wiley, New York, 1996
[10] Seredynski F., Bouvry P. and Zomaya A. Cellular Automata Computa-

tion and Secret Key Cryptography, Parallel Computation 30, 2004, pp.
753-766

[11] Tomassini M. and Perrenoud M. Stream Ciphers with One- and Two-
Dimensional Cellular Automata, in M. Schoenauer et al. (Eds.) Parallel
Problem Solving from Nature - PPSN VI, LNCS 1917, Springer, 2000,
pp. 722-731

[12] Tomassini M. and Sipper M. On the Generation of High-Quality Random
Numbers by Two-Dimensional Cellular Automata, IEEE Trans. on
Computers, 2000, v. 49, No. 10, pp. 1140-1151

[13] Wolfram S. Cryptography with Cellular Automata, in Advances in
Cryptology: Crypto ’85 Proceedings, LNCS 218, Springer, 1986, pp. 429-
432

