PAGE
4

EXTENDED CASE TRANSFER ARCHITECTURE (ECTA)

Inheritance notions

Transformation rules

Transfer rules

· INTER AND INTRA-ORGANIZATIONAL e-COMMERCE REQUIRE THE FORMULATION OF TRADE PROCEDURES BY DEFINITION – BUSINESS PARTNER SEES PARTS OF THE PROCESS THAT WOULD NORMALLY BE HIDDEN BEHIND THE ORGANIZATIONAL BOUNDARIES OF THE OTHER PARTNERS
· TO SUPPORT THE DESIGN OF COMMON PROCESS DEFINITIONS, CENTRAL REPOSITORIES WITH PROCESS TEMPLATES COULD BE USEFUL

· THE USE OF PROCESS TEMPLATES IS ALREADY SUPPORTED BY TODAY’S LEADING ENTERPRISE RESOURCE PLANNING (ERP) SYSTEMS (SAP R/3 AND BaanERP)

· TEMPLATE PROCESSES CAN BE SEEN AS TRUSTWORTHY TRADE PROCEDURES WHICH ARE OFFERED BY ORGANIZATIONS SPECIALIZING IN E-commerce SUPPORT

· USE OF TEMPLATES FOR MODELING BUSINESS PROCESSES AND CAPTURING DOMAIN KNOWLEDGE

· BUSINESS PARTNERS INVOLVED IN AN IOWF PROCESS WILL CUSTOMIZE THE TEMPLATE ACCORDING TO THEIR NEEDS; ALL PARTIES HAVE TOAGREE ON THE PROCESS THEY ARE GOING TO USE; NOT ONLY THE PROCESS HAS TO BE SPECIFIED, ALSO ISSUES SUCH AS RATES AND TIMING ISSUES HAVE TO BE RESOLVED

· ECTA ALLOWS ALL PARTNERS TO EXTEND THE PROCESS IN SUCH A WAY THAT THE LOCAL PROCESS INHERITS ALL THE PROPERTIES OF THE COMMON PROCESS

· DEFINITION OF ECTA INCLUDES SPECIALIZATION AND GENERALIZATION FUNCTIONS, SEPARATE FOR ALL BUSINESS PARTNERS

· Let us assume that the case has to be transferred from partner i to partner j; let si be a state of the case, i.e. a state of WFi; using the function of geni the state of the case is mapped onto a state of the common process, i.e. geni(si); then specialization function spej of partner j is applied and the final result is spej(geni(si)
· It is not obvious how to define generalization and specialization functions; it is also difficult to change dynamically a state of a case during transfer

· Similar to ADAPTIVE WORKFLOWS, i.e. workflows where process definition changes on-the fly

· Specialization and generalization functions suggest that inheritance notions can be useful; the common workflow can be perceived as superclass and local workflows can be perceived as subclasses of this superclass
· x is a subclass of y iff x can do what y can do; i.e. all tasks present in y should be present in x; moreover x will typically add new tasks
TYPES OF INHERITANCE:

· PROTOCOL INHERITANCE (based on encapsulation)

· PROJECTION INHERITANCE (based on abstraction)

· PROTOCOL/PROJECTION INHERITANCE (the most restrictive)

· LIFE-CYCLE INHERITANCE (the most liberal)

· Inheritance-preserving transformation rules have been defined; they correspond to a design construct often used in practice: choice, parallel composition, sequential composition, and iteration

· A complete set of transfer rules to map any case in any state from a subclass to a superclass and vice versa have been found – called transfer rules
· Transfer rules are applicable to adaptive workflows and to ECTA workflows; as long as designer sticks to the inheritance-preserving transformation rules, the generalization and specialization functions can be calculated automatically; the transfer rules preserve to some extent some syntactic and semantic correctness
PAGE
4

