Software Testing

Fault & Failure

- fault an abnormal condition or defect at the component
- failure lack of ability to perform intended function as designed. Failure may be the result of one or many faults.

Verification & Validation

 verification - checking if the project is compatible with requirements set during the Requirement Definition stage

00000000000000000000000

 validation -final checking; is the project compatible with all requirements (client's requirements as well)

Audit

- Audit a phase that evaluates the software according to specification, licenses, contracts, standards, instructions...
- Audit must be performed by someone from the outside

Testing Strategies

- Bottom up
- Top down

Versions

- Alpha
- Beta
- Gamma

International Standards

- Over the years a number of types of document have been invented to allow for the control of testing.
- Every organisation develops these documents themselves and gives them different names, thus confuses their purpose

ISO 9126

• ISO 9126 is an international standard for the evaluation of software. It classifies the areas in a structured manner as follows:

- Functionality
- Reliability
- Usability
- Efficiency
- Maintainability
- Portability

IEEE 829

• IEEE 829 - Standard for Software Test Documentation. It specifies the form and content of a set of documents for use in eight defined stages of software testing, each stage producing its own separate type of document

- How the testing will be done
- Test Design Specification
- Test Case Specification
- Test Procedure Specification
- Test Item Transmittal Report
- Test Log
- Test Incident Report
- Test Summary Report

Black & White

- White box testing:
 - testing internal mechanisms of the system
 - done by programmers and expirienced staff
- Black box testing:
 - testing the system in its envioroment
 - done by anyone, usually a team of hired specialists

Testing Team

- Manager
- Secretary
- members: users, development manager, development engineers, programing librarian, quality assurance, independent verification and testing team, independent specialists

Testing activities

• Unit testing:

break the code in several small units and test each one individually

- encourages making changes, simplifies integration
- doesn't test system-wide or integration errors
- examples: Junit, PyUnit, Nunit
- Integration testing:
 - tests how well modules fit eachother

Testing activities continued

- Integration testing cont.:
 - testing groups of units as black boxes
- System testing:
 - testing the whole system as a black box
- Regression testing:
 - regression bugs: a functionality that previously worked stops working

000000000000000000000000

- re-run old tests that uncovered a bug before

Testing activities continued

• Load testing:

- testing the system by simulating multiple users accessing the program's services concurrently
- Performance testing:
 - how fast the system works under a particular load
- Stress testing:
 - testing how system performs beyond its normal operational capacity

Testing activities continued

- Installation testing:
 - testing the system outside of the development enviorment
- Stability testing:
 - testing if an application will crash
- Usability testing:
 - measuring how well people can use the system

00000000000000000000000

- usually for testing user interfaces

Testing activities final

- Conformance testing:
 - determining whether a system meets some specified standard
- User acceptance testing:
 - testing before a new system is accepted by the customer
 - one of the final testing phases (before gamma testing)

Formal verification

- proving or disproving the correctness of the system using formal methods
- system is regarded as: FSM, LTS, automaton, digital circuit, etc...

- usually formal verification is carried out algorithmically
- automatic thorem provers

Automated testing

- done using special testing scripts
- test cases are rarely generated automatically using model-based testing
- can be used to test simple an even GUI based applications
- test output is compared with the expected one if possible

Code coverage

- measures: Statement Coverage, Condition Coverage, Path Coverage
- full path coverage is usually impractical or impossible (eg. could solve the "halting" problem)
- usually some tests are run to achieve a certain precantage of code coverage (eg. "the tests gave us 56% of code coverage")

Error seeding

 A certain ammount of faults are delibertly inserted into the code and the resulting failures are measured for various reasons

- eg. $FU = FG \cdot (FE / FEG)$
 - FU undetected errors
 - FG non seeded errors detected
 - FE seeded errors
 - FEG seeded errors detected

Reliablity measure

• Observing the amount of failures during a statistical test help us figure out the reliability of the application. There are 4 measurements that make the failure rate:

- probability of the transaction failure
- frequency of failure
- time average between the failure
- accessibility

Failure rate

- The failure rate is very important for the client because:
 - frequency of a failure has a great influence on the value of maintaining the software
 - failure let us estimate service costs
 - knowledge about failure rates let us figure out and make better creating processes to decrease the maintainance costs

Increasing the reliability

- When a failure was found and removed and no new errors was made, this is called "increasing the reliability"
- Reliability equation:
 - Reliability = Initial Reliability * exp (-C * Amount of tests)
- C factor depends on the concrete system. It may be figured by observing statistics failure of the system

Increasing the reliability

0000000000000000000000000

The best way to increase the reliability is to choose the right testing data - not randomly, but checking all possibilities

Priorities

- But testing all the possible data is impossible. We need to choose the best combinations. When we choose testing data we must remember about:
 - The possibility to execute the function is more important than the quality
 - The functions of the previous system are more important than the new one
 - The typical situation is more important than all others

System security

- Security not always means Reliability
- The illusive system may be secured, if the faults are not dangerous
- The most important is that the system is secured even when the exception was occurred or during hardware failure

Increasing the security

 more attention about security while implementing the software

- more important modules should be realized by more experienced people
- testing the software must be very carefully

Success factor of the testing process

- making the testing team more important
- the right motivation for testing eg. awards for the best testers

Result of the testing process

- Correct code, project, model and requirement
- The report of the testing process include the information about each test
- Evaluation about software failure and the maintaining cost