
Zawansowane Modelowanie
i Analiza Systemów
Informatycznych

(l-6)

Polsko-Japońska Wyższa Szkoła Technik Komputerowych
Katedra Systemów Informacyjnych

2013

ZMA-6

Overview

 Transformation procedure of ORM schema to the
RDB schema

ZMA-6 2

ZMA-6

Relational schema design

An ORM conceptual schema can be mapped into a relational
database schema by the mapping process (sometimes also called
ORM to RDB transformation).

The mapping provides relational schema design in Optimal
Normal Form: a set of normalised tables to store the
information permitted by the conceptual schema.

Recommendation: review your knowledge about Normalization
of RDB: 1, 2, 3, BCNF, 4 and 5 Normal forms.

ZMA- 3

ZMA-

Relational schema design

Input: ORM conceptual schema
Output: the list of

Table names
For each table the list of its column names
The list of columns that form table key(s)

 Identification of foreign keys.

Alternative terminology
Table Relation
Column Attribute

ZMA-6 4

ZMA-6

Names construction

• By an attribute in RDB terminology we understand an entity
type (simple) combined with a role which it plays in a fact type,

• The names of attributes are (should be) typically derived from
the semantics of the roles the entity types play in the fact types,

• The names of the relations are generally determined by the
combinations of key attributes:

– Multiple roles UC – Name of the fact type
– Single role UC – Name of the entity type ‘touching’ that role

ZMA- 5

ZMA-6

Outline of the RDB construction procedure

Step1

Each flat (non-nested) fact type generates a relation. The uniqueness
constraint (UC) of the fact type is the key of the relation,

Step 2

If a nested fact type plays a role in a non-nested fact type than it is
represented in the relation schema by all attributes ‘contributing’ to this
nested fact type (possibly recursively),

Step 3

Two relations with the same sets of keys should be combined into one
relation,

Step 4

Consider special cases (1:1 realtionship and subtyping)

ZMA- 6

ZMA-6

Illustration of the RDB design procedure

ZMA-6 7

On the next slides, for the sake of simplicity, we assume that the
names of entity types involved in fact types correspond to their
roles in these fact types.

Notation

Keys are indicated by underlining involved attributes

ZMA-6

Single role uniqueness constraints
All binary fact types involving an entity type E, which have ‘touching’ roles
with that entity type covered by single UC, contribute to the relation which
has
Attributes – entity types playing roles not covered by UC and identifier of
E
Key - identifier of E
Name - the name of the entity type is to be considered as the name for the
relation

A

B

C

D

E#

E (E# A B C D) Key E# (note; that we have combined 4 realtions
having the same key E#, according to Step 3)

ZMA- 8

In general

ZMA-6

A B

A B

C

ED

F1(AB) Key AB
F2(ACB) Key AC
F3(CDE) Key CDE

F3

F1

F2

ZMA- 9

ZMA-6

If there are more uniqueness constraints, then each of them
corresponds to a key of the relation.

F1(ABCDE) Keys ABCE and BCD

A B C DE

F1

ZMA- 10

Multiple roles UC

ZMA-6

If a nested fact F’ type plays a role in the flat fact type F then according to Step
2

Create a relation for that flat fact type as that role would be ‘played’ by
simple entity type. Informally, we may use temporarily the name of that nested fact type F’
(calling F’*) as one of the ‘attributes’ of that relation. Then by substituting F’ *with the attributes
generated by F’ we finalise the design of the table.

Since the nested fact type F’ plays a role covered with single UC in F then the
name of the relation is corresponding to F’ and the key(s) of that relation are
uniqueness constraints of F’

F’A B

F’

C

F

 F’(F’*, C) = F’(A B C) Key AB

ZMA- 11

ZMA-6

If a role of nested fact type F’ covered with a multiple role UC in F then
the name of the generated relation corresponds to F,
the key(s) of that relation are determined as concatenations of UCs of

F’ and uniqueness constraints of F

A B

F’

C

F

 F(F’* C) = F(A B C) Key ABC

ZMA- 12

ZMA-6

One more example with useful informal step - see slide 11 yellow
text (note the type problem!!!!)

F3  F1 (F1* D) key F1
F4  F1 (F1* J) key F1
Combine above into one
table (the same key)
F1 (F1* D J) key F1*

F2  F2 (F1* G H)
with key F1* H

After substitution of F1 with
contributing attributes

A B CE

F1

D
F3

J
F4

G H

F2

Resulting tables are
F1(A B C E D J) keys AE and BCE
F2 (A B C E G H) keys A E H and B C E H

ZMA- 13

ZMA-6

Step 4 - Special cases of the transformation procedure:

For each binary fact type with both roles marked with two UCs generate a
relation with name associated with the entity type name involved in role
marked with the mandatory role constratint (on figure below A).
Any other binary fact type involving such entity with UC on it contributes a
column to that realtion as it would be in the case of step 3 for all binary fact
types. For the illustarion see slide 19.

A (A# B#)

A
(A#)

B
(B#)

ZMA- 14

ZMA-6

Special cases (cont):

If both roles in a binary fact type are marked with a single UC, and
both roles are total roles, then create a relation for this fact type. The
identifiers of both entity types (A#, B#) below become the keys of the
resulting relation. Any other binary fact types involving entity A or B
with UC on it contributes a column to that relation. For the illustarion
see slide 20.

ZMA- 15

A (A# B#)

A
(A#)

B
(B#)

ZMA-

A (A# B# D)
B (B# C)

A
(A#)

B
(B#)

D

C

Note that the attribute B# in relation A may have different
meaning than B# in relation B. Therefore, both relations are
necessary.

Eg A- Department , B – Manager in (F1), B – Employee in F2.
In such case B# in A is to be carry the semantics of the role of B in
F1 – Manager in our exampleZMA-6 16

F1

F2

ZMA-6

A (A# B# D C)

A
(A#)

B
(B#)

D

C

ZMA- 17

ZMA-6

Mapping of Mandatory Roles

If an entity type (including nested fact type) is involved in another fact type
through a mandatory role constraint, then (as the general principle) the resulting
attribute should be declared mandatory and implemented as ‘NOT NULL’ .
However, there could be some exceptions - in such case a satisfactory solutiom
should be found.

F’ (A# B# C (mand) D (op))

ZMA-7 18

A B

C

F’

D

Suppose that F’ stands for Enrolment, A for Student, B – Subject, C – Final Result, D -
…xxx
Each enrolment must end up in a final result and this will be known at the end of
semester but the table is implemented in DB earlier. What would you suggest as a
solution?

ZMA-6

F’ (A# B# C (mand) D (op))

ZMA- 19

A B

C

F’

D

Solutions suggested:
1 Do not declare column C ‘not null’, but remember that at the end of the semester all
results are to be inserted (some additional db application program is needed)
2Declare column C ‘not null’, Insert some dummy value for each enrolment and at the
end of the semester update it to the real final result.
3CREATE the table without column C and ALTER the table when results are available
(this is the worst solution as delays with some results can be expected and altered table
does not accept ‘not null’ declaration for additional column anyway.

ZMA-6

Step 4 - Special cases - subtyping

There are many ways to transform subtype
structures. At one extreme, treat the subtype
structure by ignoring the created subtype
construction.

At another extreme, create a relation for each
subtype i.e. 'pulling down' the supertype's fact types
into each subtype.
Any compromise between the two extremes can be
applicable.

ZMA- 20

ZMA-6

SCHEMA TRANSFORMATION EXAMPLES

Student
Unit

(STU#) (UNIT_CODE)
studies taken

by

EnrolmentExample 1

The relation Enrolment is formed with two attributes:
Student number and Unit code

Enrolment (Stu#, Unit_Code)
The key for the relation form two attributes

(Stu#, Unit_Code)

Enrolment Stu # Unit_Code

ZMA- 21

ZMA-6

Exa
m

ple
2

Employee
 Money
 ($amt)

Department
 (DEPT)

 Address
 (ADDR_STR)EMP#

Domicile

Work_location

Salary

id
by

is id
of

lives
at

is
home

of

has
working

works
in

earns
earned

by

E
m

ploye e_id

real(8,2)

char(15)

char(60)
digit(6)

Build a relation around Employee

ZMA- 22

ZMA-6

The Semantics of Relation:

All these binary FT describe certain properties of employees.
The natural name choice for the relation is Employee.
Other attributes are describing employee:

Empl Address,
Employing Department
Salary

The relation created is :
Employee (Emp# , Dept, Salary, H_Addr) Key: Emp#

ZMA- 23

ZMA-

Example 3

U

Salesperson

PersonNname
 (P_NAME)

 Money
 ($amt)

Salary

Commission

F
irst_n

am
e

F
am

ily_n
a m

e

Has
last

name

is
last

name

has
first

name

is
first

name

earns
p.a.

earned
by

has
bonus

is
bonus

char(20)

real(8,2)

has

name

Build a relation
around Salesperson
As in example 2

Salesperson
identity

Earnings Bonus
(opt)

Salesperson

ZMA-6 24

ZMA-6

Salesperson (SalesPerson Identification, Salary, Bonus)
Key is SalesPerson Identification

Notice, that Salesperson entity type is not identified in 1-1 way by a
single label type SalesPerson ID – no such label type)
However, the schema provides identification of Salesperson using a
combination of first and last names.

The resulting relation is
Salesperson (SP_Fname SP_Lname, Salary, Bonus)
With a single key; SP_Fname SP_Lname

ZMA- 25

ZMA-6

 Person
 (P_NAME)

 Hobby
 (REC_NAME)

 Spouse
 (SPOUSE_NAME)

 Day
 (DDMMYY)

Recreation

Wedding

Marriage

has
hobby

is
hobby
of

married
was
married
to

is
wedding
day

was
married
on

char(20)char(20)

char(20)

Recreation (P_Name Hobby) Key: P_Name Hobby

Marriage (P_Name SpouseName WeddingDate) Key: P_Name SpouseName

ZMA- 26

Example 4

ZMA-6

 B
 (B#)

 C
 (C#)

 D
 (D#)

 A
 (A#)

 G
 (G#)

 M
 (M#)

 E
 (E#)

 J
 (J#)

 H
 (H#)

 L
 (L#)

 K
 (K#)

 X
 (X#)

 Y

 Z

 V

 W

 I
 (I#)

Example 5
Subtyping

X B

X K L

X C

R1

R2

R3

X AR5

Y D ER6

Z M Z’R7

V G HR8

V IR4

W JR9

ZMA- 27

ZMA-6

 X

 Y

 Z

 V

 W

Absorbed Y by X

The design of relational database when subtyping is present and where
certain subtypes are ABSORBED by their supertypes:

Z by X Y, Z by X

X B

X K L

X C

V I

X A

Y D E

Z M Z’

V G H

W J

X B

X K L

X C

V I

X A D(o) E(o)

Z M Z’

V G H

W J

X B

X K L

X C

V I

X A M(o) X’(o)

Y D E

V G H

W J

X B

X K L

X C

V I

X A D E(o) M(o) X’(o)

V G H

W J

ZMA- 28

(o) - optional

ZMA-6

X B

X K L

X C

V I

X A

Y D E

Z M Z’

V G H

W J

X B

X K L

X C

V I

X A

Y D E

Z M Z’J(o)

V G H

W by ZAbsorbed: Z by X and V
by Y

V, Y, Z by X

X B

X K L

X C

Y I

X AM(o)X’(o)

Y D EG(o) H(o)

W J

X B

X K L

X C

X I

X A D E M X’ G H
all (o) except A.

W J

 X

 Y

 Z

 V

 W

Can V be absorbed by Y only? If V is absorbed by Y then what are other
compulsory absorbptions?
How the design looks like if ALL subtypes are ABSORBED by supertype X?

ZMA- 29

ZMA-6ZMA- 30

In next ‘generic’ examples of relational design we adopt the following naming convention:

Capital letters A, B,… - the symbols for entity types (except F) ,

F1, F2, … - the denotations for fact types, F1*, F2* set of attributes defined by F1, F2, ..
respectively

r1, r2, r3 … - denote uniquely the roles the entity types play in the fact types.

Combination (entity_type role_number) denotes the attribute generated by that entity type and
that role as indicated on the Figure below: B5 is the attribute in the table generated by role r5.

A flat fact type may generate a relation that has its source name in another fact type. In this
case, informally we use an arrow ‘  ‘ between the fact id and relation as illustarted on the
next slide.

In the case of an entity type being involved in a role with a single UC on the role ‘touching’
that entity type, the identity of that entity type – typically its label type – will serve as the
attribute name.

Example:

We will use K# in K(K# B5) BUT NOT K(K4 B5) B
B#

r4 r5

F2
K
K#

ZMA-6

.

Example 6
 C

 (C#)

 G
 (G#)

 A
 (A#)

 B
 (B#)

 D
 (D#)

 E
 (E#) H

 (H#)

F7

F6

F8

F3

F5
F1

F2

r13r3

r80 r8

r16r60r6

r15

r5
r17r7

r1

r10

r2

F1  A (A# , B10)
F2  F2 (B2, D12)
F6  F6 (E6,H60,G16)
F8  F5 (F5*, G8) =

F5 (F3*, E5, G8) =
F5 (A3, C13, E5, G8)

F7  F5 (B#, F5*) =
F5 (B#, A3, C13, E5)

With B# as a possible alternative key

r12

31

Both tables have the same key so they can be combined into one relation:

 F5 (A3, C13, E5, G8, B#)
The semantics and other analysis is needed to decide if B# can be an
alternative key for F5

ZMA-6

Example 7

r6 r7

A
A#

G
G#

r10 r11
E
E#

H
H#

r8 r9
C
C#

r12 r13
D
D#

B
B#

r4 r5

r1 r2 r3

F1  F1(G1 A2 A3)
F2  F4 (F4* B5) =
 F4 (G6 F5* B5) =
 F4 (G6 H10 E11 B5)
F3  F3(F4* C9) =
 F3(G6 F5* C9) =
 F3(G6 H10 E11 C9)
F6  F5 (F5* D13) =
 F5(H10 E11 D13)
F7  A (A#, G14)

In case of transformation of F1,
the resulting relation name is to
be invented from the semantics
of the key G1 A2.

In other cases they are typically
inherited from the fact type
name that provides the key.

F5

F4

F6

F3

F2

F1

r14 r15
F7

ZMA-6 32

ZMA-6ZMA-6 33

r11 r8 r16

A
A#

E
E#

C
C#

D
D#

r13

r31

r5 r12

B

BX
Is..
ID

BY
Is..
ID

U

F3

F5

F6

r22 r18 r6

F7

r10

r4

r14 r20

F4

r25

F9F10

r1 r15
F1

r9

r29

F1  B(B? A1)
B is not identified here. So after
its identification as label
cobination BX BY we have
B(BX BY A1)

F5  D (D# A5)
F3  F3 (A25 A11 C8 C16)
other key is C8 C16

F10  F7 (F7* C31) =
 F7(A22 C18 C6 C31)

F9  F9(F7* D4) =
 F9(A22 C18 C6 D4)

F6  F4 (F4* D29) =
 F4 (F7* E20 D29) =
 F4 (A22 C18 C6 E20 D29)

Example 8

ZMA-ZMA-6 34

Different schemas for the same UoD.

Resulting in different structure of data

storage.

Music

gets
Grade

(Gr_code)
Student
(St_id)

French

gets

History

gets

Maths

gets

Geography

…
..

gets

enrolled In which
Got
by

Grade
(Gr_code)

Student
(St_id)

Subject
(S_name)

Results

Schema equivalence and its impact on relational design

Example

ZMA-6

StudentNo Subject Result

113456 History A

113456 Maths A

113456 French B

… …

232425 History C

… … …

Student Math History Biolog English Sci Music PhEdu Geogr

113456 A A C B C B C A

232425 C B B A A B A B

Storing the same info in different logical
structures

Note that the second table contains the
same information but occupies less space
than the first one:

If there are 8 subjects then the first
relation requires 8 records per student –
24 fields while the other one – 1 record
with 9 fields.

ZMA-6 35

ZMA-6

Foreign Keys
• When construction of all relations is completed then one can identify foreign

key connection between them. For this purpose for each key check if

– (not single attribute key) The combination of attributes forming that key is
present in another relation,

– Check if between the populations of the fact type generating the relations is a
subset constraint or other constraint that secures the presence of values of each
instance in foreign key in the referenced key.

If both conditions are satisfied then there is a foreign key connection between these
relations

or

– (single attribute key, and for simplicity use notation E#) check if the relevant to
that key entity type E has played a role in another fact type. Then the attribute
corresponding to that entity type and that role is a foreign key in that table and
referencing the key E# in the table E

ZMA- 36

ZMA-6ZMA-6 37

r11 r8 r16

A
A#

E
E#

C
C#

D
D#

r13

r31

r5 r12

B

BX
Is..
ID

BY
Is..
ID

U

F3

F5

F6

r22 r18 r6

F7

r10

r4

r14 r20

F4

r25

F9F10

r1 r15
F1

r9

r29

B(BX BY A1)
D (D# A5)
F3 (A25 A11 C8 C16)
other key is C8 C16
F7(A22 C18 C6 C31)
F9(A22 C18 C6 D4)
F4 (A22 C18 C6 E20 D29)

Example 9

Forein keys :

D4 in F9 D29 in F4
both referencing D
A22C18C6 in F9 and
A22C18C6 in F4

both referencing F7

Note the mandatory role constraints
on D (role r12) nd on F7 (role r13)
secure the subset constraint
between instances of foreign key
and referenced key

ZMA-6

 Make
 (MODEL)

 Car
 (REG#) Address

 (ADDR)

 Date
 (DDMMYY)

 Section
(Sec_NAME)

 Staff Student

 Course
 (DEGREE)

 Kind_of_
 Person
 (KOP)

 Uni_Person
 (ID#)

Type

Parking
Home

Date_of_Birth

Location
Enrolment

Details

has
car

of
make

parks
on

campus

driven
by

has
people

is of
kind

born
on

is dob

lives
at

is
home

of

works
in

has
working

enrolled
in

has
enrolledType (ID#, Kind_of_person)

Car (Reg# , Model, ID#)

Uni_person (ID# , DoB, Home)

Student (ID# , Degree)

Staff (ID#, Sec_Name)

ID# references Uni_person

ID# references Uni_person ID# references Uni_person

ID# references Uni_person

Example 10

ZMA- 38

Summary
• We introduced an outline of the transformation procedure from

ORM schema to RDB schema.

• The porcedure has been illustrated by examples – more in
additional studio’s material.

 Finally, Object Role Modeling (ORM) is a powerful method for
designing and querying database models at the conceptual level,
where the application is described in terms easily understood by
non-technical users. In practice, ORM data models often capture
more business rules, and are easier to validate and evolve than data
models in other approaches.

39
ZMA-6

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39

